

Disclosures

Travel grant, Ion Beam Applications, 2018

Employer: University of Florida

Learning Objectives

1

Formulate treatment recommendations for common pediatric tumors.

2

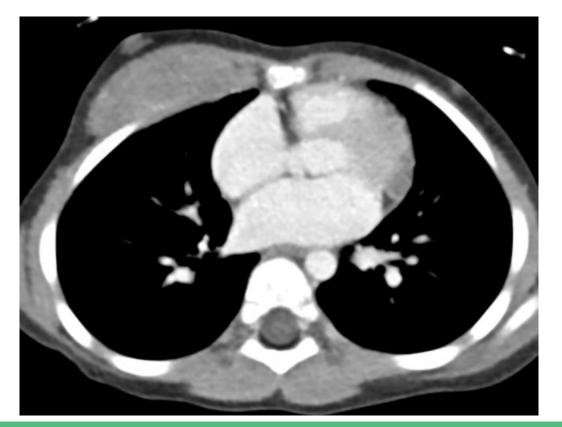
Develop radiation treatment plans using appropriate dose, volume, and planning parameters. 3

Recognize the potential acute and late toxicity associated with radiotherapy in the pediatric population.

Outline

- Non-CNS
 - Rhabdomyosarcoma
 - Ewing sarcoma
 - Wilms tumor
 - Neuroblastoma

• CNS


- Medulloblastoma
- Ependymoma
- Germinoma
- Low grade glioma

For all cases:

- Perform complete history and physical exam
- Fuse initial imaging (MRI preferred, and/or CT or PET) for treatment planning (both those at initial diagnosis and post-chemo or post-op)
 - Delineate tumor at initial presentation first

Case 1

• 3 yo girl with right chest wall mass, like a breast bud, rapidly increasing in size

US, then CT or MRI of primary site

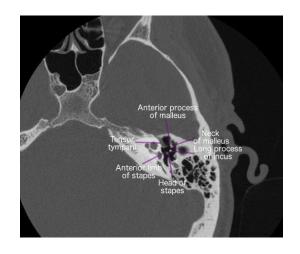
Biopsy: RMS, FOX01 fusion positive

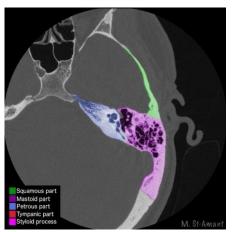
Favorable or Unfavorable Site?

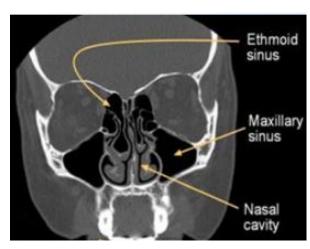
Favorable

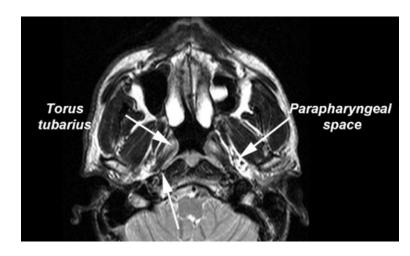
- Orbit
- Head and neck (excluding parameningeal)
- Genitourinary (excluding bladder/prostate)
- Biliary tract/liver

Unfavorable

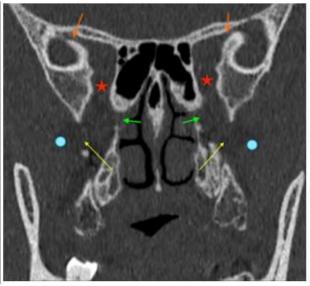

- Bladder/prostrate
- Extremity
- Parameningeal (Mnemonic: MMNNOOPP)
- Trunk, intrathoracic
- Retroperitoneum
- Pelvis, perineal/perianal
- Gastrointestinal

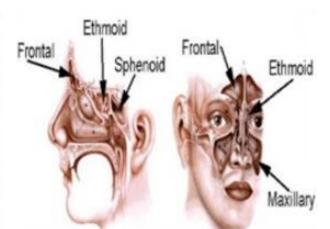

Middle ear


Mastoid region


Nasal cavity

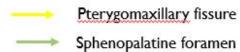
Nasopharynx

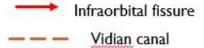

★ Pterygopalatine fossa

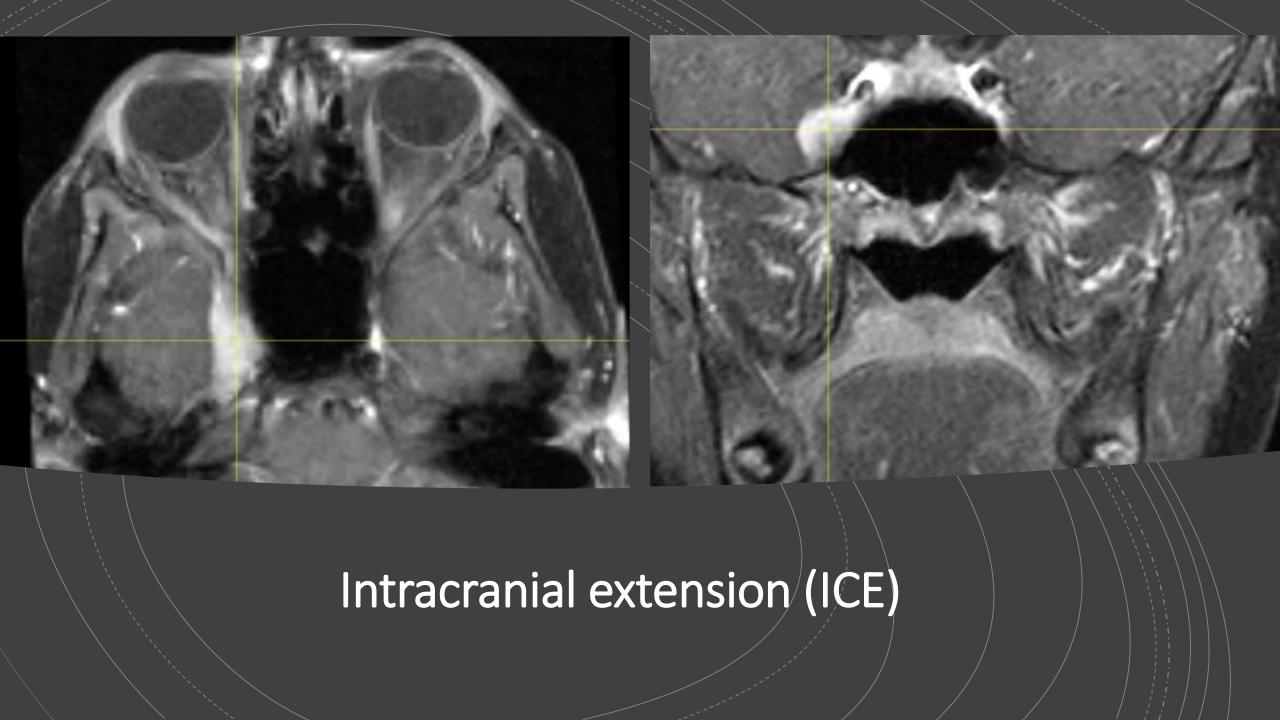

Infratemporal fossa

Paranasal sinus

Parapharyngeal region







Allemeersch G, European Society of Radiology Arya et al Int J Otorhinol Clin 2012; https://radiopaedia.org https://radiopaedia.org

https://slideplayer.com/slide/6108058, 4556214

Stage	Site*	Invasiveness	Size	Nodal status	Mets
l II	Favorable Unfavorable	T1 or T2 T1 or T2 a	a or b	N0 or N1 N0	M0 M0
Ш	Unfavorable	T1 or T2 b		N0	MO
			a or b	N1	M0
IV	Any site	T1 or T2		N0 or N1	M1

Group I	Localized disease, completely resected Confined to organ or muscle of origin
В	Infiltration outside organ or muscle of origin; regional nodes not involved
Group II	Compromised or regional resection Grossly resected tumor with microscopic residual disease
В	Regional disease, completely resected, in which nodes may be involved or extension of tumor into adjacent organ may exist
С	Regional disease with involved nodes, grossly resected, but with evidence of microscopic residual disease
Group III	Incomplete resection or biopsy with gross residual disease
Group IV	Distant metastases at diagnosis

REGIONAL NODAL BASINS FOR RHABDOMYOSARCOMA

Extremity

Lower Extremity –inguinal, femoral, popliteal nodes (rarely involved)
Upper extremity – axillary, brachial, epitrochlear, infraclavicular nodes (infraclavicular)

Genitourinary

Bladder/Prostate – pelvic, retroperitoneal nodes at renal artery level or below Cervix and Uterus– pelvic, retroperitoneal nodes at renal artery level or below Paratesticular – pelvic, retroperitoneal nodes at renal artery level or below Vagina – retroperitoneal, pelvic nodes at or below common iliacs inguinal nodes Vulva – inguinal nodes

Head and Neck

Head/Neck – ipsilateral cervical, jugular, preauricular, occipital, supraclavicular nodes for laterally placed tumors (excluding scalp); may have bilateral adenopathy with centrally placed tumors Orbit/Eyelid – ipsilateral jugular, preauricular, cervical nodes

Intrathoracic

Internal mammary, mediastinal nodes

Retroperitoneum/Pelvis -

Pelvic, retroperitoneal nodes

Trunk

Abdominal Wall – inguinal, femoral nodes Chest Wall – axillary, internal mammary, infraclavicular nodes

OTHER

Biliary/Liver – liver hilar nodes Perianal/Perineal – inguinal, pelvic nodes; may be bilateral

RMS: General Treatment Paradigm

This Case

Biopsy

- Core needle biopsy
- Histology, PAX-FOX fusion

Small round blue cell tumor, rhabdomyosarcoma, FOX-01 positive

WorkUp

- Bone marrow bx, PET or bone scan, CT C/A, CBC/CMP, Echo
- If parameningeal, MRI brain and LP

Determine Stage

Surgery

- *IF* resectable while maintaining form and function
- Determine Group and Risk group

Chemo

- Vincristine, Actinomycin +/- Cyclophosphamide or VAC/VI
- 12 weeks for low and int risk, 20 weeks high risk (induction)

RT or DPE + RT

- IF indicated. Doses 36, 41.4 or 50.4 Gy at 1.8 Gy/fx
- Starts at week 12, given concurrent with chemo (hold actinomycin)

Chemo

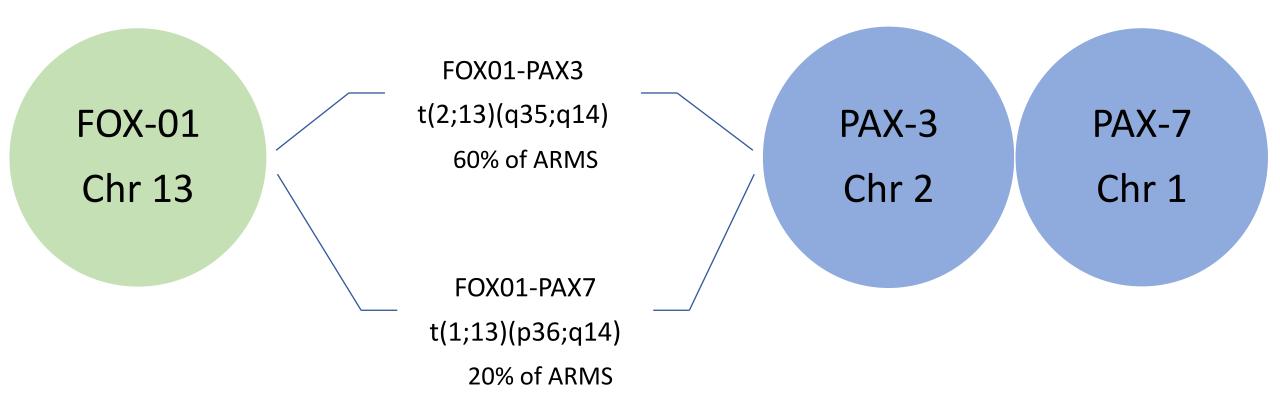
- Vincristine, Actinomycin +/- Cyclophosphamide or VAC/VI
- For 24-66 weeks (consolidation and maintenance)

Negative Stage III T2b N0 M0, unfavorable site

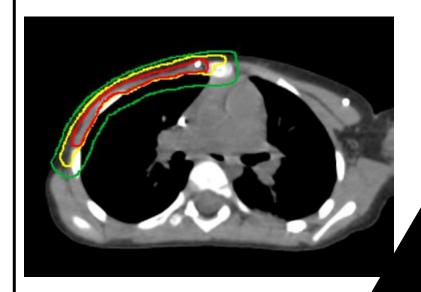
Op Note: "...removing it from the chest wall completely."

Group I; Intermediate Risk

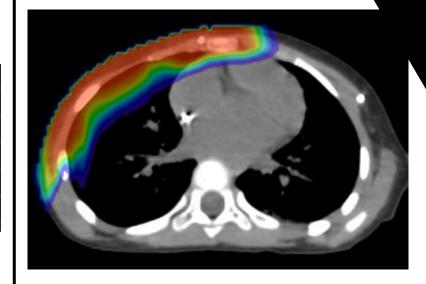
VAC x 12 weeks


36 Gy in 30 fxs at week 12 to tumor bed (GTV) + 1cm margin edited for barriers to spread (CTV) + 0.5cm PTV

VAC x 14 cycles/42 weeks total


Translocations in RMS

Encode fusion proteins with oncogenic activity


>95% of embryonal RMS (ERMS) do NOT contain a FOXO1 fusion

1 \(\text{100.00 (%) } 36.00 (Gy) \)
1 \(\text{95.00 (%) } 34.20 (Gy) \)
1 \(\text{80.00 (%) } 28.80 (Gy) \)
1 \(\text{65.00 (%) } 23.40 (Gy) \)
1 \(\text{50.00 (%) } 18.00 (Gy) \)
1 \(\text{10.00 (%) } 3.60 (Gy) \)

GTV1: tumor extent at diagnosis

CTV: 1cm expansion, edited to barriers of spread (+draining lymphatics for N+)

PTV: 0.5cm expansion

GTV2: residual gross induction

chemo

CTV2: 1cm expansion, edited to

barriers of spread

PTV2: 0.5cm expansion

*PTV can be 0.3cm in skull base/head and neck sites

ARST1431 doses for metastases

17.7.5 <u>Standard (Non-SBRT) Radiation Dose Guidelines for Individual Metastatic Lesions (all non-bone sites, all non-lung sites and bone sites > 5 cm)</u>

	Dose (Gy)
Sites of initial metastases in CR	40 in 20 fractions
Lesions which are SD or PR	50 in 25 fractions

Radiation Dose for RMS

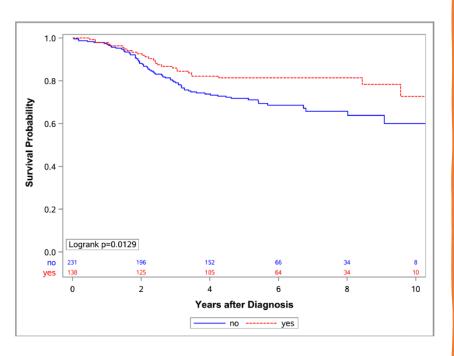
	Fusion Fusion negative positive	
Group I	No RT	36 Gy
Group II	36 Gy	36 Gy
Group III	50.4 Gy*	50.4 Gy*

• Node positive

• Draining lymphatic chain: 36 Gy

Resected nodes: 41.4 Gy

Unresected nodes: 50.4 Gy


17.7.6 SBRT Dose Guidelines for Lesions that are SD or PR at Completion of VAC/VI Chemotherapy

	Dose/fraction (Gy)	Dose (Gy)		
PTV2 = GTV2	7.0	35		
PTV1= CTV2 + 2mm	6.0	30		
After 15Gy whole lung				
PTV2 = GTV2	6.0	30		
PTV1 = CTV2+2mm	5.0	25		

17.7.7 SBRT Dose Guidelines for Lesions that are CR at Completion of VAC/VI Chemotherapy

PTV2 = GTV2	6.0	30	
PTV1= CTV2 + 2mm	5.0	25	
After 15Gy whole lung			
PTV2 = GTV2	5.0	30	
PTV1 = CTV2+2mm	4.0	20	

Delayed primary excision (DPE)

81% had reduction in RT dose after DPE

For initial Group III disease
Sites: bladder/prostate,
extremity, retroperitoneal,
trunk, intrathoracic and
perineal tumors

If disease becomes resectable after induction chemotherapy

Weigh likelihood of RO/R1 resection and surgical morbidity vs RT dose.

No benefit to debulking

Do not omit RT after DPE even if R0 or R1 resection, but can decrease dose based on extent of resection

R0: 36 Gy; R1: 41.4 Gy; R2: 50.4 Gy

For RT after DPE, GTV = initial extent of tumor + post-op surgical bed

22% with DPE had loss of organ or function

Outcomes Overall (n = 1727)5-yr EFS: 69% **EFS Probability** 95% CI: 66 to 71% ≥90% ≥ 40 - <90% Group I-III Group IV (n = 1540)(n = 187)5-yr EFS: 73% 5-yr EFS: 30% <40% 95% CI: 71 to 76% 95% CI: 22 to 37% Fusion + Fusion -Fusion+ Fusion -(n = 111)(n = 1285)(n = 255)(n = 76)5-yr EFS: 78% 5-yr EFS: 52% 5-yrE FS: 46% 5-yr EFS: 6% 95% CI: 75 to 80% 95% CI: 36 to 56% 95% CI: 0 to 11% 95% CI: 44 to 60% H1 > 1 Metastatic Site 1 Metastatic Site Favorable Site Unfavorable Site (n = 45)(n = 618)(n = 66)(n = 667)5-yr EFS: 70% 5-yr EFS: 85% 5-yr EFS: 54% 5-yr EFS: 34% 95% CI: 66 to 74% 95% CI: 81 to 88% 95% CI: 41 to 68% 95% CI: 18 to 49% Group II/III ≤5 cm >5 cm Group I (n = 240)(n = 246)(n = 372)(n = 427)5-yr EFS: 91% 5-yr EFS: 81% 5-yr EFS: 77% 5-yr EFS: 65% 95% CI: 71 to 83% 95% CI: 77 to 85% 95% CI: 59 to 72% Age ≥1 Age < 1 Age ≥1 & < 10 Age < 1 & ≥ 10 (n = 411)(n = 16)(n = 282)(n = 90)5-yr EFS: 47% 5-yr EFS: 71% 5-yr EFS: 82% 5-yr EFS: 47% 95% CI: 33 to 62% 95% CI: 78to 86% 95% CI: 20 to 75% 95% CI: 65 to 78%

FIGURE 1 Event-free survival (EFS) tree of analytic cohort with terminal leaves labeled by risk groups. EFS, event-free survival; Fusion, FOXO1 fusion status

Toxicity

- Acute
 - Dermatitis
 - Fatigue
- <u>Late</u>
 - Pneumonitis
 - Pulmonary fibrosis
 - Cardiac disease
 - Bone and soft tissue hypoplasia
 - Breast hypoplasia
 - Second malignancy
- Echo annually

Table 3
Late toxicities observed in 83 RMS patients treated with PBS proton therapy.

Type of toxicity	PM RMS $(n = 46)$ Any grade/(grade 3)	Orbital RMS: $(n = 17)$ Any grade/(grade 3)	UG RMS $(n = 10)$ Any grade/(grade 3)	Others RMS $(n = 10)$ Any grade/(grade 3)
Localised alopecia	8/(N/A) **	1/(N/A) **	0/(N/A) **	1/(N/A) **
Growth Hormone deficiency	11/(N/A) **	3/(N/A) **	0/(N/A) **	0/(N/A) **
Other endocrinopathies	6/(0)	2/(0)	0/(0)	1/(0)
Facial hypoplasia	9/(0)	5/(0)	0/(0)	0/(0)
Visual complications	9/(3)	13/(10)	0/(0)	0/(0)
Hearing impairment	7/(2)	0/(0)	1/(0)	0/(0)
Dental growth impairment	3/(0)	0/(0)	0/(0)	0/(0)
Chronic nasal and sinus congestion	2/(0)	0/(0)	0/(0)	0/(0)
Urinary complication	0/(0)	0/(0)	3/(0)	0/(0)
Defecation problems	0/(0)	0/(0)	2/(0)	0/(0)
Secondary cancer (radiation induced)	0/(0)	0/(0)	0/(0)	1/(1)

RMS: Ongoing considerations

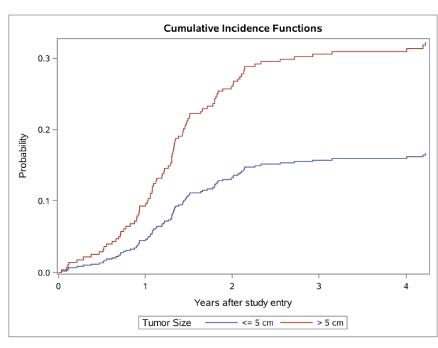
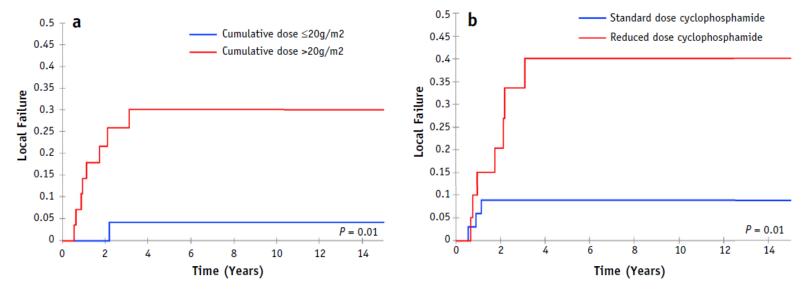
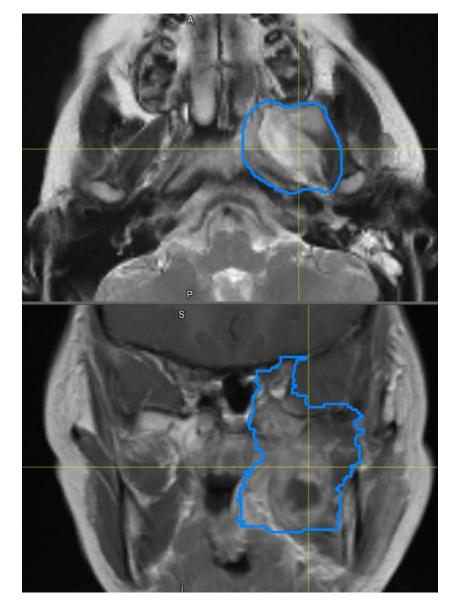



Figure 2. Local failure on ARST0531 for group III patients with tumors \leq 5cm (n=161) \geq 5cm (n=205)

Fig. 3. Local failure in patients with parameningeal rhabdomyosarcoma by (a) cumulative cyclophosphamide dose and (b) cyclophosphamide dose intensity.

Orbital Dose? 45 vs 50.4 Gy
Timing of RT for parameningeal RMS with ICE?


Casey et al. Cancer. 2019 September 15; 125(18): 3242-3248

Casey et al. IJROBP 2019 Apr 1;103(5):1151-1157

Case 2

• 12 yo girl in 5th grade who loves Monopoly had left otitis media x 2 treated with antibiotics, then onset of left facial pain and numbness

5 x 3 x 2 cm mass extending from left paraparyngeal space to the inferior margin of the left orbit. Intracranial extemsion along the left anterior cavernous sinus and anterior left temporal dura. Focal destruction left maxillary antrum. Tumor involvement of the left nasopharynx and left retromolar trigone. Left eustachian canal obstruction and associated left osteomastoiditis.

Ewing: General Treatment Paradigm

Biopsy

- Core needle biopsy
- Histology, t(11;22)(q24;q12) translocation (present in 85%)

WorkUp

- PET, Bone marrow biopsy, CT chest, CBC/CMP; Echo
- Determine Stage

Chemo

- Vincristine, Adriamycin, Cyclophosphamide/Ifosofamide + Etoposide
- q 2 weeks x 6 cycles

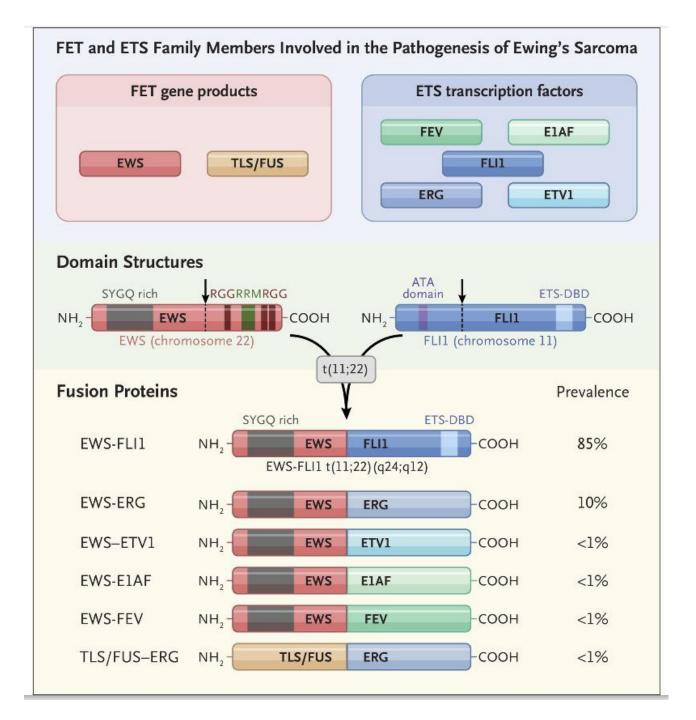
Local Therapy

- Radiation (PreOp, PostOp, or Definitive; 45-55.8 Gy) with concurrent chemo (VC/IE)
- Surgery

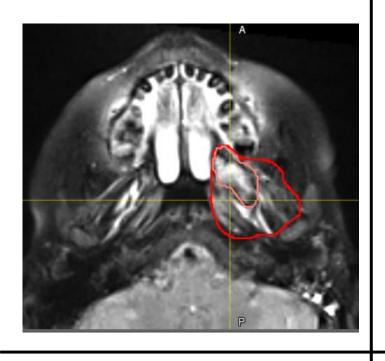
Chemo

- Vincristine, Adriamycin, Cyclophosphamide/Ifosofamide + Etoposide
- q 2 weeks x 11 cycles

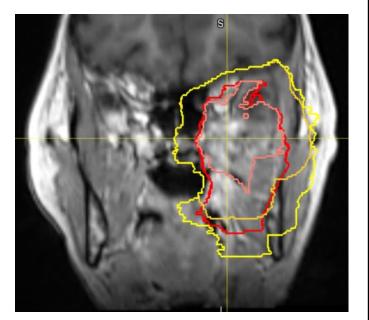
This Case

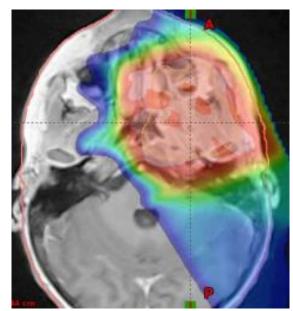

Small round blue cell tumor, Ewing, 11;22 translocation present

Negative AJCC bone tumor staging (includes grade): Stage IIA T1 N0 M0


VAC/IE x 12 weeks

Definitive RT: 45 Gy to PTV1, total dose 55.8 Gy in 31 fxs at week 13


VAC/IE x 34 weeks total



- Treatment strategy: direct inhibition of the FET-ETS fusion protein
 - lack of enzymatic activity and disordered structure make it difficult to target
- Alternative mechanism-based approaches:
 - inhibition of effector molecules of the FET-ETS fusion protein
 - reversion of the FET-ETS induced epigenetic modifications
 - targeting of molecules and signaling pathways that support and cooperate with fusion protein function

- GTV1: disease prior to any surgical debulking or chemotherapy.
- CTV1 = GTV1 + 1cm
- PTV1: 0.3cm expansion
- GTV2: residual tumor after induction chemo with or without surgery.
 For unresected tumors, include pretreatment abnormalities in bone and the gross residual tumor in soft tissue after induction chemotherapy.
- CTV2 = GV2 + 1cm
- PTV: 0.3 cm expansion

Radiation Dose for Ewing sarcoma

17.7.2.1 Radiation dose guidelines for all targeted volumes, excluding lymph nodes, and chest wall tumors

with malignant pleural effusion or pleural nodules

experimental

Tumor Site and Presentation	PTV1	PTV2
Definitive RT	45 Gy	10.8 Gy
Definitive RT – vertebral bony lesion	45 Gy	5.4 Gy
Definitive RT – extraosseous ESFT without bony involvement	50.4 Gy	N/A
with CR to Chemotherapy		
Preop RT	36 Gy	N/A
Postop RT after pre-op RT: microscopic residual, >90% necrosis	N/A	14.4 Gy
Postop RT after pre-op RT: microscopic residual, <90% necrosis	14.4 Gy	N/A
Postop RT after pre-op RT: gross residual	19.8 Gy	
Postop RT –microscopic residual, >90% necrosis	N/A	50.4 Gy
Postop RT – microscopic residual, <90% necrosis	50.4 Gy	N/A
Postop RT – gross residual	45 Gy	10.8 Gy

17.7.2.2 Radiation dose guidelines for pathologically involved lymph nodes

Involved Lymph Nodes Doses	PTV1	PTV2
LN resected – separate from primary site	50.4 Gy	
LN resected – contiguous with primary site	50.4 Gy	
LN unresected - primary adequately resected	45 Gy	10.8 Gy
LN unresected - primary inadequately resected (microscopic residual)	45 Gy	10.8 Gy
Whole abdomen RT for malignant ascites or diffuse peritoneal involvement	24 Gy*	

^{*} Whole abdomen RT will be administered at 1.5 Gy per fraction

17.7.2.3 Radiation dose guidelines for pathologically involved pleural fluid

	Chest wall tumors with positive fluid cytology				
Age	PTV1*	PTV2*	PTV3^		
<u>≤</u> 6	32.4 Gy	10.8 Gy	12 Gy		
> 6	30.6 Gy	9 Gy	15 Gy		

^{*}PTV1 and PTV2 - 1.8 Gy per fraction

Note: Heterogeneity correction must be used for lung irradiation

17.7.2.4 Radiation dose guidelines for pleural nodules

Chest wall tumor with secondary soft tissue only pleural nodules, radiographic PR				
Age	PTV1*	PTV2*	PTV3^	
<u>≤</u> 6	23.4 Gy	19.8 Gy	12 Gy	
> 6	21.6 Gy	19.8 Gy	15 Gy	
Chest wall tumor with secondary soft tissue only pleural nodules, radiographic CR				
Age	PTV1*	PTV2*	PTV3^	
<u>≤</u> 6	37.8 Gy		12 Gy	
> 6	36 Gy		15 Gy	

^{*}PTV1 and PTV2 - 1.8 Gy per fraction

Note: Heterogeneity correction must be used for lung irradiation

AEWS1031

[^]PTV3 - 1.5 Gy per fraction

[^]PTV3 - 1.5 Gy per fraction

Radiation dose affects local control

Ahmed et al 2017 (retrospective)

- 100% of cohort pelvic primary
- 5 year local control 72% with dose < 56 Gy vs.
 83% with dose ≥ 56 Gy (p=0.61)

Paulino et al 2007 (retrospective)

- 25% of cohort with pelvic primary
- For tumors > 8cm, dose > 54 Gy achieved higher local control (86% vs 27%, p=0.006)

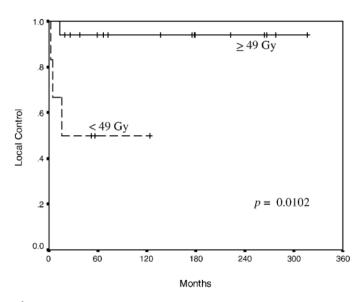
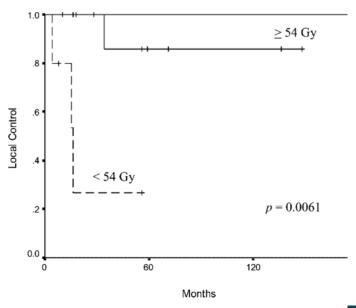




Fig. 1. Local control in tumors ≤ 8 cm (n = 23) according to radiotherapy dose.

Fig. 2. Local control in tumors >8 cm (n=17) according radiotherapy dose.

Improved local control with dose escalation

- Talleur et al 2016 (phase II)
 - 36% of cohort with pelvic primary
 - Tumor <8cm treated to 55.8 Gy
 - Tumor ≥ 8cm treated to 64.8 Gy
- 10 year local failure 4.4%
- No local failures in tumors ≥8 cm treated to 64.8 Gy

Toxicity

Acute: dermatitis, mucositis, odynophagia, xerostomia

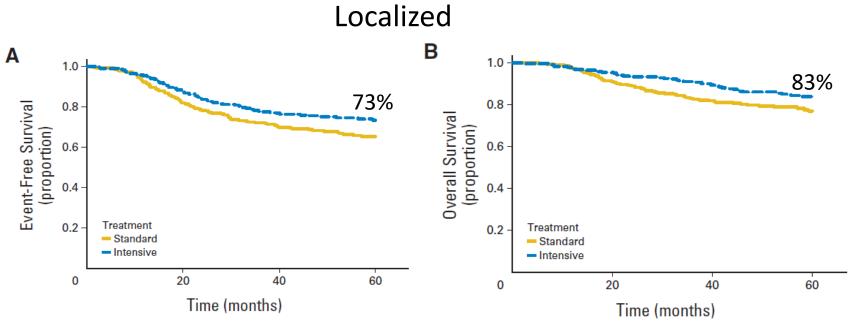
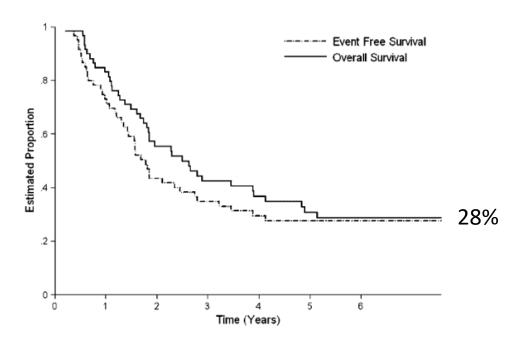
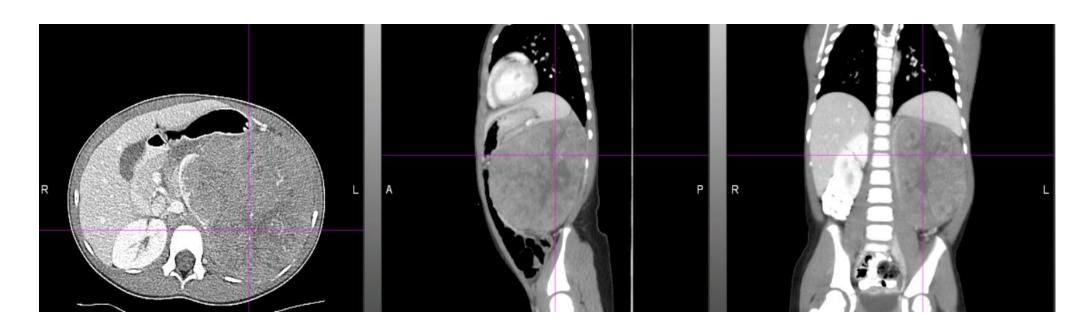

Late: dental hypoplasia, dental caries, xerostomia, trismus, facial hypoplasia, skin pigmentation, hearing loss, dry eye, cataract, neurocognitive dysfunction, endocrinopathy, decreased vision, second malignancy

Table 17.9: Organs at risk dose recommendations


Organ	Volume (%)	Dose (cGy)
Single organs		
Bladder	100%	4500
Esophagus	50%	4000
Heart	100%	3000
Liver	100%	2340
	50%	3000
Rectum	100%	4500
Optic chiasm	100%	5400
Small Bowel	75%	4500
Spinal Cord	Any volume	5040
Paired organs		
Kidney (bilateral)	50%	2400
Kidney (bilateral)	100%	1440
Lung (bilateral)^	20%	2000
Lung (bilateral) ‡	35%	2000
Lung (bilateral)	100%	1500
Optic nerve	100%	5400
Eye	100%	4500
Lens	100%	600
Cochlea	100%	4000

AEWS1031

Outcomes: Ewing sarcoma



Womer et al. J Clin Oncol. 2012 Nov 20;30(33):4148-54

Miser et al. Pediatr Blood Cancer 2007;49:894–900

Case 3

 4 yo girl who enjoys dance and gymnastics presents with abdominal pain and distension

Wilms: General Treatment Paradigm

This Case

Surgery

No biopsy

 Histology (favorable vs unfavorable), 1q and LOH 1p/16q testing; margins, nodes

WorkUp

 CT C/A/P (80% of metastatic disease is to the lungs); bone scan for clear cell variant and brain MRI for rhabdoid variant

• Determine Stage

RT

• *IF* indicated. Flank vs whole abdomen. Concurrent chemo

Stage 3, high risk histology, sites of mets for Stage 4

Chemo

Vincristine, Actinomycin +/- doxorubicin +/- cyclo, carbo, etop

25-28 weeks total

Note: SIOP approach is chemo first

Advantages: reduced risk of tumor rupture, assess responsiveness, potential for downstaging and treatment deintensification (~20%)

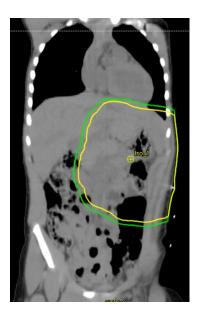
Small round blue cell tumor, Wilms, FH with no anaplasia

Op Note: "... renal vein margin positive. 4 of 7 lymph nodes..."

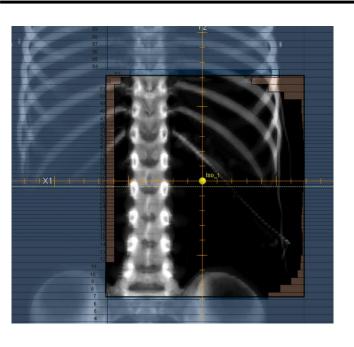
Negative Stage III

10.8 Gy flank RT by day 10 to tumor bed (GTV) + 0.5 cm CTV + para-aortics T10-L5 + 0.5cm PTV

VAD total of 25 weeks


Surgical staging

I	Tumor limited to kidney and completely excised. No penetration of capsule of involvement of renal sinus vessels
П	Tumor extends beyond kidney but is not completely excised. There is penetration of capsule of involvement of renal sinus vessels.
III	Residual/unresectable tumor after surgery, positive nodes, local spillage or needle biopsy, R1/R2 resection, transected tumor thrombus, piecemeal resection, diffuse peritoneal contamination, peritoneal implants
IV	Hematogenous metastases to lung, liver, bone, brain or LNs outside of abdomen
V	Bilateral Wilms tumor (then stage each kidney separately)


Flank RT

Whole abdomen RT

- pre-op tumor rupture
- Intraop tumor spill beyond tumor bed

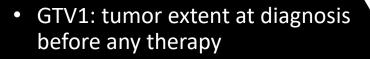
4D CT recommended

AREN1921 Contouring Atlases

E General Instructions

Whole Lung Contouring
Guidelines (young adult male)

E Cardiac Contouring Guidelines (young adult male)

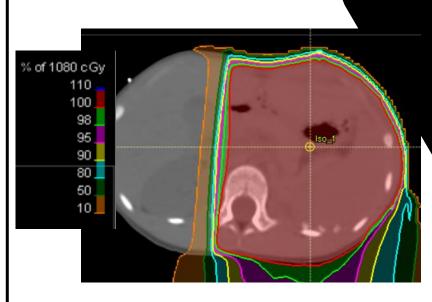

Whole Lung IMRT contours (pediatric female)

E Cardiac Contouring Atlas (pediatric female)

Contouring Steps for combined IMRT Lung and Whole Abdomen (pediatric female)

Contouring Steps for combined IMRT Lung and Flank (pediatric female)

https://www.qarc .org/cog_protocol _resources.htm


 CTV1: 0.5cm + para-aortic LNs from top of T10 – bottom of L5

• PTV1: 0.5-1cm + entire vertebral bodies

• GTV2: residual disease if > 1cm

• CTV2: GTV2 + 0.5cm

• PTV2: 0.5-1cm

Field Design

Field design is based on initial presentation volumes on CT/MR scan

required, treat concurrently 1cm sup to Whole Lung 1cm beyond Whole Abdomen Flank dome of lung 1cm margin diaphragm mediastinum on vertebral body & pleura Limit heart exposure Lateral to abdominal hea Spare femoral Often approximates 1cm margin 1 cm inf to L1 vertebral to block edge Bottom of disease in body obturator ureter foramen

Slide courtesy of Dr John Lucas

Timing: If WLI & Flank/WART

Radiation Dose for Wilms Tumor

No radiation

10.5 Gy at 1.5

10.8 Gy at 1.8 Flank

19.5 Gy at 1.5 Whole abdomen

19.8 Gy at 1.8

Stage I-II FH

Whole WLI for age < 12 months

Stage III FH
Stage I-III FA
Stage I-II DA
Stage III DA Infants
Also, resected LNs age
< 12 months

Stage IV with lung metastases For all UH For FH if no CR at week 6

12 Gy at 1.5

WH

Stage III DA age > 12 months with diffuse unresectable peritoneal implants

Unresected LN mets or resected LNs age > 12 months Stage III DA Liver mets (focal or

whole liver)

21.6 Gy at 1.8

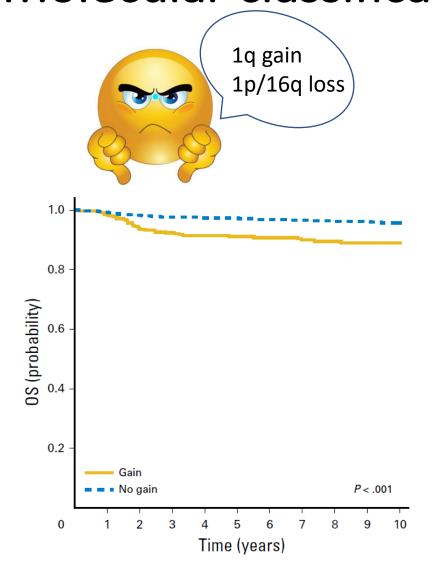
25.2 Gy at 1.8

30.6 Gy at 1.8

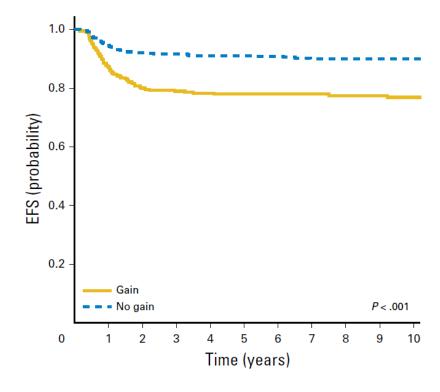
Boost dose to unresected primary disease > 1cm: 10.8 Gy

Whole brain if < 5 lesions (+ 10.8 Gy focal boost)

Bone mets for age < 16


Whole brain if > 5 lesions (no boost)

Bone mets for age 16+


Renal dose should be limited to 14.4 Gy by using renal shielding.

AREN1921

Molecular classification

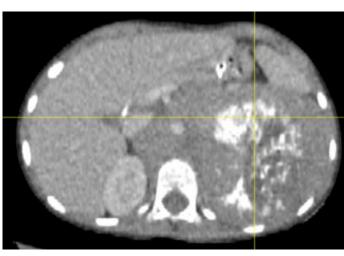
Table 2. Eight-Year EFS Stratified by 1q Status and LOH 1p/16q Status						
1q Status	1p or 16q Call	No. of Patients	8-Year EFS (95% CI)			
No gain	No loss	715	91 (88 to 93)			
No gain	Loss	82	84 (74 to 93)			
Gain	No loss	174	77 (69 to 84)			
Gain	Loss	143	78 (70 to 87)			
Abbreviation: EES event-free survival: LOH loss of beterozygosity						

Children's Oncology Group (COG) Renal Protocols				
Tumor Risk Classification	Multimodality treatment			
Very Low Risk FH WT <2 years, stage I FH, <550 g	Surgery, NO therapy if central path review & LN sampling			
<u>Low Risk FH WT</u> ≥2 years, Stage I FH, ≥ 550g or Stage II FH without LOH	Surgery, No RT, Regimen EE4A			
<u>Standard Risk FH WT</u> Stage I and II FH with LOH or Stage III FH without LOH	Surgery, Regimen DD4A Surgery, RT, Regimen DD4A			

Regimen	Agents
EE4A	Vincristine, dactinomycin (VA)
DD4A	Vincristine, dactinomycin, doxorubicin (VAD)
М	Vincristine, dactinomycin, doxorubicin, cyclophosphamide, etoposide (VADCyE)
UH1	alternating VDCy/CyC [carboplatin] E

Children's Oncology Group (COG) Renal Protocols					
Tumor Risk Classification	Multimodality treatment				
High Risk FH WT Stage III/IV FH with LOH Stage IV FH slow/incomplete responders	Surgery, RT, Regimen M, WLI				
Stage IV FH: CR of lung metastases at wk 6/DD4A (rapid early responders)	Surgery, RT, Regimen DD4A. No WLI*				
Stages I-III <mark>FA</mark> Stage I <mark>DA</mark>	Surgery, RT, Regimen DD4A				
Stage IV FA Stage II-IV DA	Surgery, RT, Regimen UH1				
Stage V	PreOp Chemo; eval @ week 6 for bx, sx, or continued chemo if CR; eval @ week 12 for sx vs chemo if CR; If sx, postop chemo/RT based on sx/path findings				

^{*}do not omit WLI in patients with 1q gain


Outcomes: Wilms Tumor

24% of survivors are affected by *severe* chronic health conditions:
Cardiac toxicity
Pulmonary toxicity
Infertility
Second malignancies

		4 Year	
Stage		RFS/EFS (%)	OS (%)
	I (age <24months, tumor weight <550g)	84	98
	I/II, no LOH	91	98
	I/II, LOH 1p and 16q	75	91
	III/IV, no LOH	83	92
	III/IV, LOH 1p and 16q	66	78
	V, any LOH	61	81
	I, diffuse anaplasia	68	79
	II, diffuse anaplasia	83	82
	III, diffuse anaplasia	65	67
	IV, diffuse anaplasia	33	33
	V, diffuse anaplasia	25	42

Case 4

Calcified multilobulated retroperitoneal abdominal mass, likely arising from the left adrenal gland. 13.3 x 9.5 x 13.2cm. **Encasesment** of the abdominal aorta, superior mesenteric artery, inferior mesenteric artery, and bilateral renal arteries. The tumor **crossed midline** to the right side of the abdomen. **Osseous metastasis** was demonstrated at T9, L5, and S1.

- 2 yo presents with abdominal distension and pain and persistent low grade fever. On exam, palpable mass LUQ abdomen
- Abdominal US and xray showed large mass
- Urine assay: elevated HVA/Crt ratio of 193.8 [normal range 0.0 22/0 ug/mg]; elevated VMA/Cr ratio of 147.2 [normal range 0.0 11.0 mg/g]
- US guided biopsy: poorly differentiated neuroblastoma with unfavorable histology and MKI >4%. **N-MYC not amplified**
- BM biopsy: negative

I-123 MIBG: abnormal uptake within the left abdomen and right paramidline abdomen, corresponding to the retroperitoneal tumor on CT. Additional foci of activity was demonstrated at the skull vertex, skull base, L5, and S1.

Staging

Table 1. International Neuroblastoma Staging System (INSS).

INSS Stage	Description		
1	Localized tumor, grossly resected, no lymph node involvement		
2A	Unilateral tumor, incomplete gross excision, negative lymph nodes		
2B	Unilateral tumor with positive ipsilateral lymph nodes		
3	Tumor infiltrating across midline or unilateral tumor with contralateral lymph nodes or midline tumor with bilateral lymph nodes		
4	Distant metastatic disease		
4S	Localized primary tumor as defined by stage 1 or 2 in patient under 12 months with dissemination limited to the liver, skin, and/or bone marrow (<10% involvement)		

Table 2. International Neuroblastoma Risk Group Staging Sysem (INRGSS).

INRG Stage	Description
L1	Localized tumor with no image-defined risk factors [13]
L2	Localized tumor with one or more image-defined risk factors [13]
M	Distant metastatic disease
MS	Metastatic disease in children under 18 months with metastases limited to skin, liver, and/or bone marrow (<10% involvement)

Table 3. International Neuroblastoma Pathology Classification (INPC) histology definitions.

Favorable Histology	Unfavorable Histology
Ganglioneuroma mature (stroma-dominant)	Ganglioneuroblastoma, nodular (composite; stroma-rich/stroma-dominat and stroma-poor)
Ganglioneuroma maturing (stroma-dominant)	Neuroblastoma (stroma-poor)—all else not in favorable histology category
Ganglioneuroblastoma, intermixed (stroma-rich)	
Neuroblastoma (stroma-poor), differentiating or poorly differentiated with low/intermediate MKI in patients <1.5 years at diagnosis	
Neuroblastoma (stroma-poor), differentiating with low MKI in patients 1.5–5 years at diagnosis	

Risk Categories

INSS Stage	Age	MYCN Status	Shimada Histology	DNA Ploidy	Risk Group
1	0- 21 yrs	Any	Any	Any	low
2A/2B	<1 y ≥ 1-21 y ≥ 1-21 y ≥ 1-21 y	Any Non-Amp Amp Amp	Any Any Fav Unfav	Any - -	Low Low Low High
3	<1yr <1yr ≥ 1-21 y ≥ 1-21 y ≥ 1-21 y	Non-Amp Amp Non-Amp Non-Amp Amp	Any Any Fav Unfav Any	Any Any - -	Intermediate High Intermediate High High
4	<1y <1y ≥ 1-21 y	Non-Amp Amp Any	Any Any Any	Any Any	Intermediate High High
45	<1 y <1 y <1 y <1 y	Non-Amp Non-amp Non-amp Amp	Fav Any Unfav Any	> 1 = 1 Any Any	Low Intermediate Intermediate High

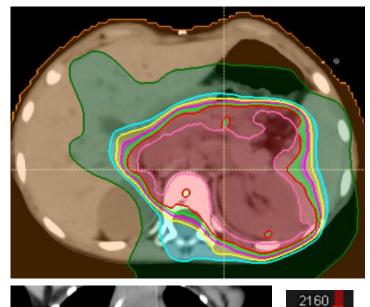
INRG Stage	Age (months)	Histologic Category	Grade of Tumor Differentiation	MYCN	11q Aberration	Ploidy		Pretreatment Risk Group
L1/L2		GN maturing; GNB intermixed					A	Very low
L1		Any, except		NA			В	Very low
		GN maturing or GNB intermixed		Amp			K	High
L2	10.00	Any, except			No		D	Low
	< 18	GN maturing or GNB intermixed		NA	Yes		G	Intermediate
		100	No		E	Low		
≥ 18	Differentiating GNB nodular:	Differentiating	NA	Yes				
	neuroblastoma	Poorly differentiated or undifferentiated	NA			Н	Intermediate	
			A 	Amp			N	High
М	< 18			NA		Hyperdiploid	F	Low
	< 12			NA		Diploid	1	Intermediate
	12 to < 18			NA		Diploid	J	Intermediate
	< 18			Amp			0	High
	≥ 18						Р	High
MS				1159-050	No		С	Very low
	< 18			NA	Yes		Q	High
	~ IO			Amp			R	High

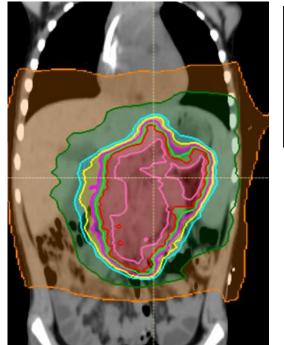
Sokol et al. Children (Basel). 2019 Feb 11;6(2):27

TREATMENT RISK GROUP Very low risk Observation Low risk Surgery alone Intermediate risk Surgery + chemotherapy (doxorubicin, cyclophosphamide, cisplatin) 4-8 cycles RT for liver mets causing respiratory distress (4.5 Gy at 1.5 GY/fx) or spinal cord compression (9 Gy for < 3yo and 21.6Gy for > 3 yo @ 1.8/fx) ► High risk Induction chemo (5 cycles) + surgery + high dose chemo with stem cell rescue (tandem) + RT + consolidation isotretinoin or immunotherapy

Neuroblastoma: Treatment paradigm

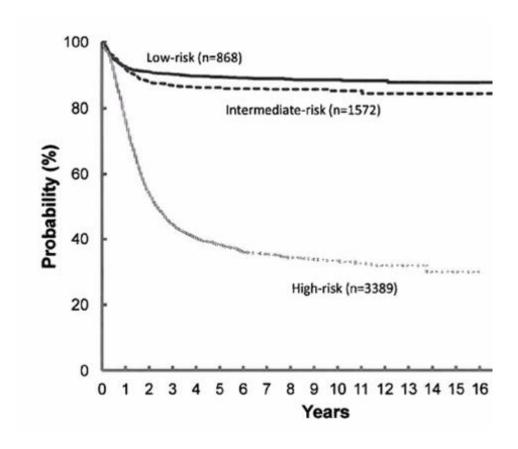
Treatment course


- Induction chemo x 5 cycles (TOPO/CPM; CDDP/ETOP; VCR/DOXO/CPM)
- CT C/A/P: decreased tumor size to 7.9 x 6.2 x 4.8cm
- STR: The main tumor was resected completely but residual adenopathy could not be completely resected due to the risk of vascular injury.
 Pathologic examination demonstrated maturing ganglioneuroma (favorable histology).
- CT C/A/P: Residual tumor was in LUQ of the abdomen interposed between the superior mesenteric artery and portal vein and extending inferiorly in the left periaortic region, with some degree of encasement of the left renal artery and vein. This corresponded to the radiotracer activity seen on the MIBG scan.
- I-123 MIBG scan: increased uptake in the left mid-abdomen just left of the midline. No bone disease.
- Tandem ASCT
- Radiation to residual disease + tumor bed 21.6 Gy
- No radiation to bony mets given complete response to induction chemo



Radiation planning (high risk disease)

Dose	21.6 Gy at 1.8 Gy/fx
Target	Postchemo/PreOp tumor + involved nodal regions 1cm CTV 0.5cm PTV
Boost	No (per ANBL0532; JCO 2020)
Elective nodal radiation	No (per COG A3973; Braunstein et al 2018)
Metastatic sites	21.6 Gy at 1.8 Gy/fx to disease positive on MIBG pre-HSCT (< 5 mets) or positive after HSCT for > 5 mets
RT timing	4-6 weeks post-transplant



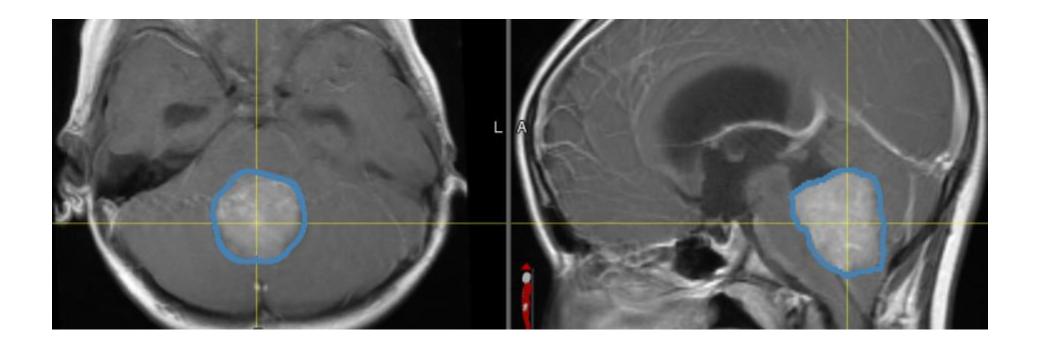
Outcomes: Neuroblastoma

<u>Acute</u>: nausea, emesis, diarrhea, cytopenia

<u>Late</u>: bone hypoplasia/curvature, heart injury, lung injury, second malignancy, hearing loss, infertility

Park et al. Pediatr Blood Cancer. 2013 Jun;60(6):985-93

	Wilms Tumor	Neuroblastoma
Age	Peak 3-4 years	< 2 years
Clinical presentation	Painless abdominal mass Rarely constitutional symptoms	Painful abdominal mass Often constitutional symptoms
Origin	Kidney	Retroperitoneal neural crest
Renal mass effect	Intrinsic	Extrinsic
Calcifications	< 15%	> 85%
Crosses midline	Rarely	Frequently
Vessel involvement	Invasive	Encases
Metastatic spread	Lung Liver Lymphatics	Bone/bone marrow Liver Skin
Staging work-up	CT/MRI abdomen, CT chest	CT/MRI abdomen, MIBG, bone scan, urine VMA and HVA
Prognostic factors	Stage, histology, age, 1q gain, LOH 1p/16q	Stage, histology, age, mycn status
Special stages	V (bilateral)	IVS (< 1 year old with spread to skin, liver, bone marrow)


Normal structures for intracranial cases

- Brain
- Cerebellum
- Brainstem
- Brainstem core and surface
- Cochlea
- Cornea
- Globe
- Hippocampus
- Hypothalamus

- Lacrimal glands
- Lens
- Optic nerves and chiasm
- Pituitary
- Mastoids
- Scalp
- Spinal cord
- Supratentorial brain
- Temporal lobes

Case 5:

• 12 yo girl presents with headache, emesis and fatigue

Medulloblastoma: General Treatment Paradigm This Case

Surgery

- Aim for GTR
- Histology, molecular subtype

WorkUp

- MRI spine, post-op MRI brain within 1-2 days, LP post-op (10-14 days), CBC (weekly during RT)
- Determine Stage

RT

- CSI 23.4 36 Gy; boost to <u>tumor bed</u> to total dose 54 Gy.
- Aim for 1 month post-op. Avoid treatment breaks (↓outcomes if > 45 day RT course)

Chemo

- +/- weekly Vincristine concurrent
- Adjuvant x 4-6 cycles, Cis/VCR & CPM/VCR

CSI **not** recommended for children < 3 years (Instead, intensive chemo such as HeadStart protocol +/- focal RT)

Additional work-up: Ophthalmology exam, audiology exam, baseline endocrine labs (baseline and yearly), neurocognitive testing (baseline and q2-3 years)

Histological classification: WHO grade:

Molecular information:

Grade IV Non-WNT/non-SHH molecular subgroup (IHC)

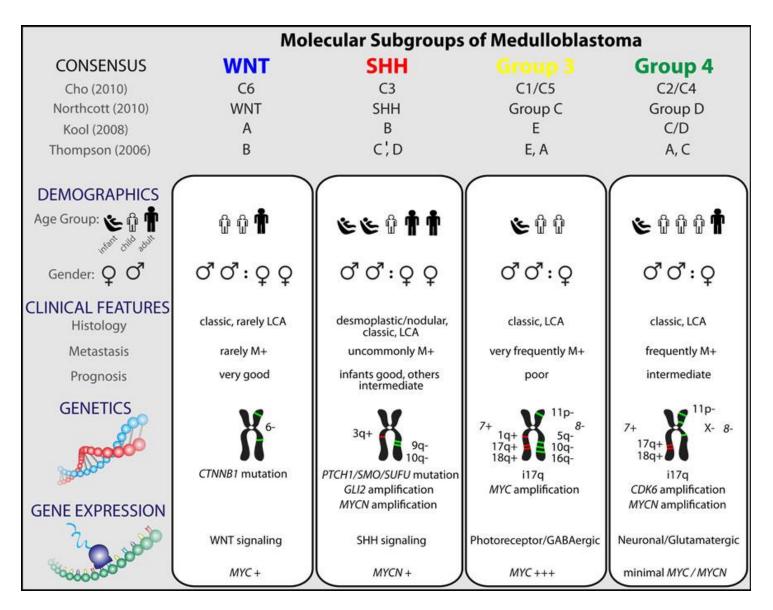
Medulloblastoma, classic variant

p53 wild type pattern (IHC)

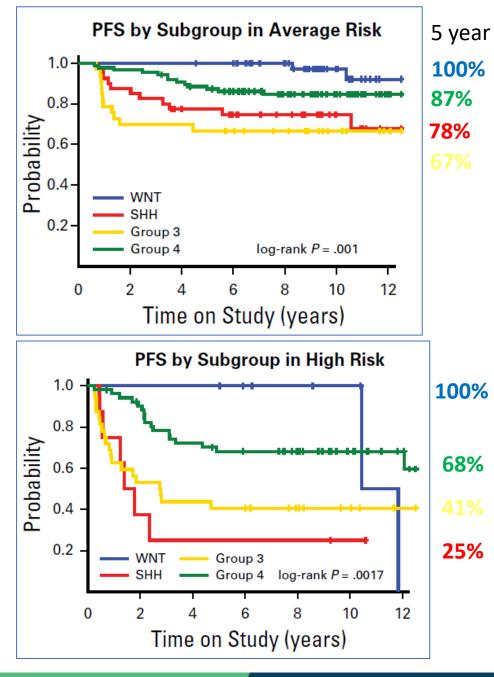
No significant gain or amplification of MYC
No significant gain or amplification of MYCN
Monosomy chromosome 6 not detected

Op Note: "...The tumor was noted to be adherent to the midportion of the floor of the 4th ventricle. This portion was shaved down to a very thin rind..."

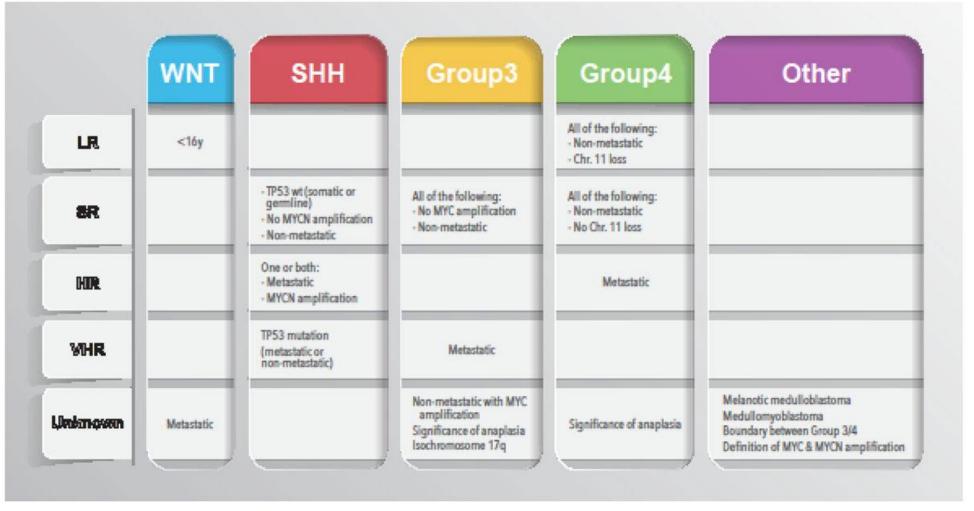
Negative work-up Chang stage T2 N0 M0


23.4 Gy in 20 fxs CSI + 30.6 Gy in 17 fxs to tumor bed = 54 Gy

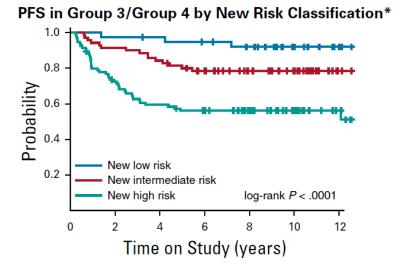
9 cycles adjuvant chemo

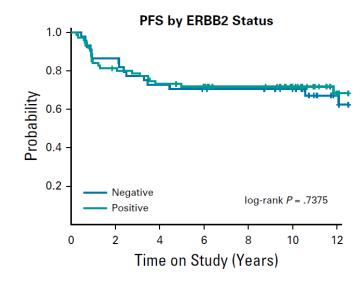

Risk Group: Traditional

	Standard Risk	High Risk
Residual gross disease	<1.5cm ²	> 1.5cm ²
Metastatic spread	MO	M1-4
Patient age	≥ 3 years	< 3 years
Histology	Classic, desmoplastic	

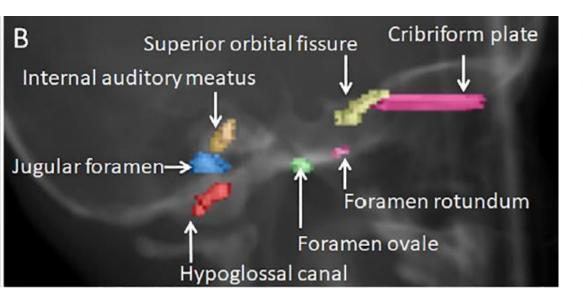

"Other than average risk" large cell anaplastic histology, M0, GTR

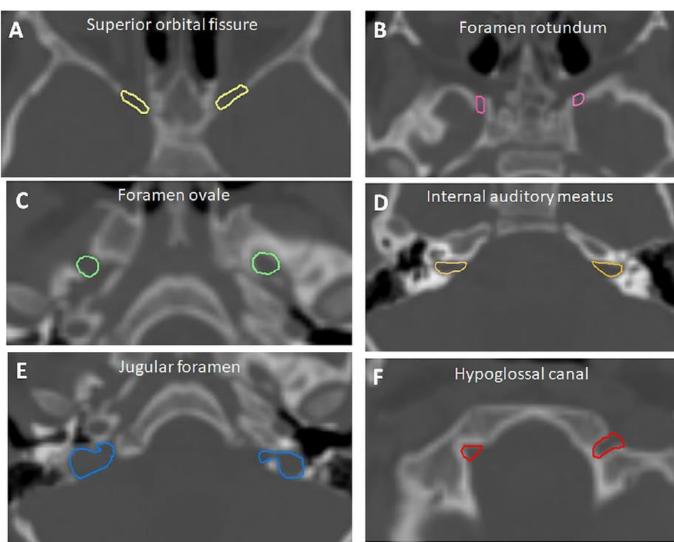
Taylor et al. Acta Neuropathol. 2012. 123:465-72. Gajjar et al. J Clin Oncol. 2021 Mar 1;39(7):822-835




Molecular Based Risk Groups

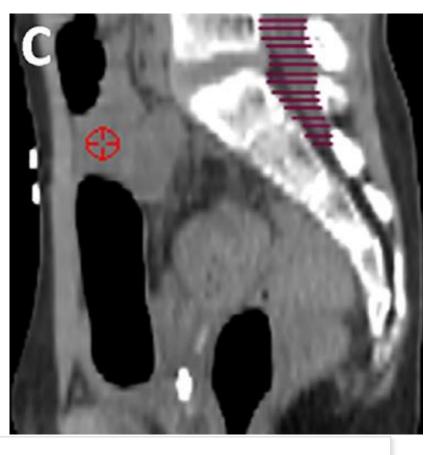
Clinicomolecular risk factor analysis identified:


- 3 low-risk groups
 - WNT, low-risk SHH, and low-risk combined groups 3 and 4
 - Excellent survival, 5-year PFS > 90%
- 2 very high-risk groups
 - high-risk SHH and high-risk combined groups 3 and 4
 - Poor survival; 5-year PFS < 60%

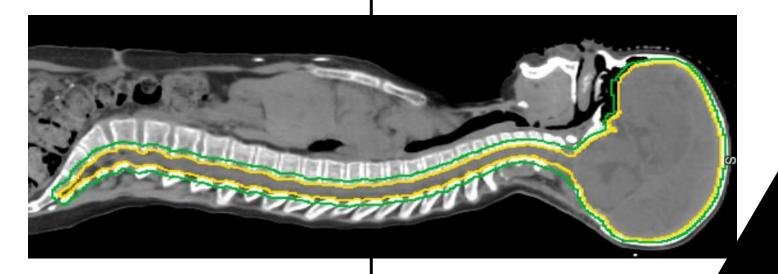


Gajjar et al. J Clin Oncol. 2021 Mar 1;39(7):822-835

Skull base canals/foramen



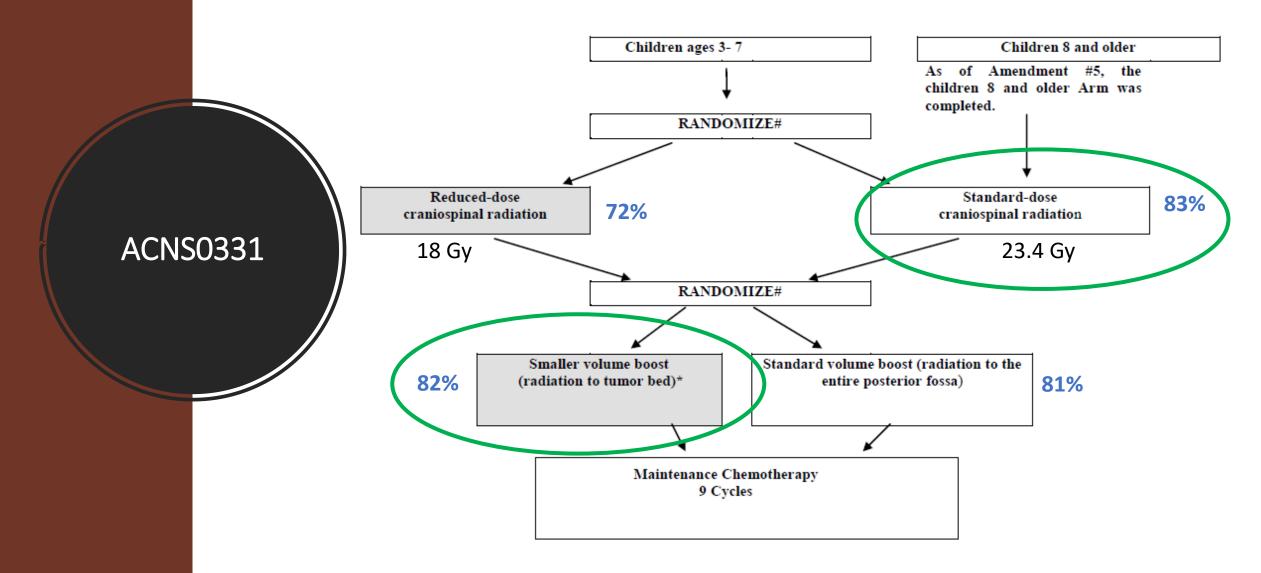
Ajithkumar T et al. Radiother Oncol Actions. 2018 Aug;128(2):192-197.





Spine CTV

- Include extensions along the nerve roots laterally (A)
- Include thecal sac as identified by MRI usually the bottom of S1 as an obvious CSF space but there is often elongation which is less obvious extending down to the bottom of S2 or even further inferiorly" (B-C)



- CTV Brain + CTV Spine = CTV CSI
- PTV Brain = + 3mm
- PTV Spine = + 5mm
- PTV Brain + PTV Spine = PTV CSI
- GTV: residual disease + tumor bed
- CTV: + 5-10mm
- PTV: + 3mm

Include pseduomeningocele if present

Variability across institutions on extending CTV in brainstem

5 year Event Free Survival

Toxicity

Acute: dermatitis, alopecia, fatigue, headache, nausea, emesis, diarrhea, cytopenia

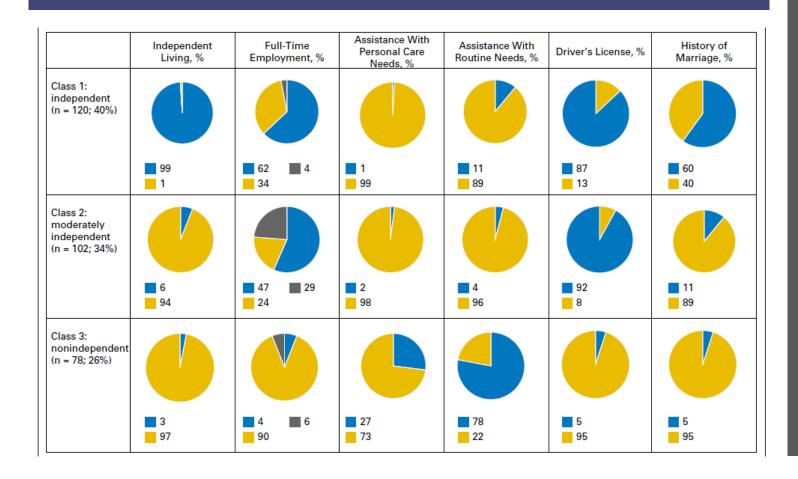

Late: cataracts, hearing loss, neurocognitive dysfunction, endocrinopathy, decreased truncal height, fracture, stroke, necrosis, second malignancy

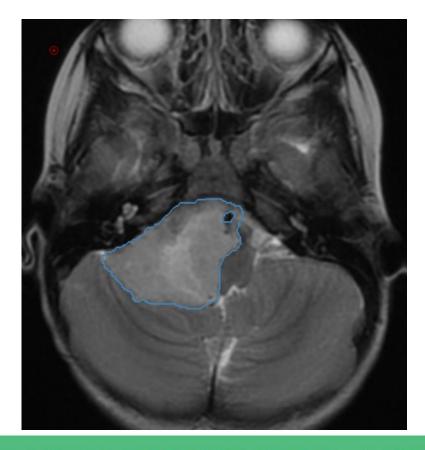
Table IV. Time from initial surgery to occurrence of serious toxicity.

Deficit	No. of patients	Median time to occurrence from completion of treatment (years)	Range (years)
Serious edema/	1	0.7	-
herniation			
Radionecrosis	3	2.81	1.5 - 10.11
Visual disturbance	1	2.81	_
Cognitive disturbance	7	3.6	0.7 - 7.2
Hearing deficit	8	8.1	0.5 - 23
Secondary malignancy	5	12.0	6.4 - 13.7
Seizures	1	19.5	_
Ataxia	1	20.5	_
Stroke	1	24	_
Basilar aneurysm	1	34.5	_

Christopherson et al. Acta Oncol. . 2014 Apr;53(4):471-80

Toxicity

On MVA, decreased likelihood of independence with:


- CSI (OR 4.2)
- Hydrocephalus with shunting (OR 2.6)
- Younger age at diagnosis (OR 1.2)

Medulloblastoma: Ongoing considerations

Case 6

• 3 yo boy with ataxia, torticollis, neck pain, and emesis

Intracranial Ependymoma: General Treatment Paradigm This Case

Surgery

Aim for GTR (*extent of resection strong prognostic factor)

Histology

WorkUp

MRI spine, post-op MRI brain within 1-2 days, LP post-op (10-14 days)

RT

Tumor bed 54-59.4 Gy (CSI to 36 Gy if M+)

Aim for 1 month post-op

Chemo

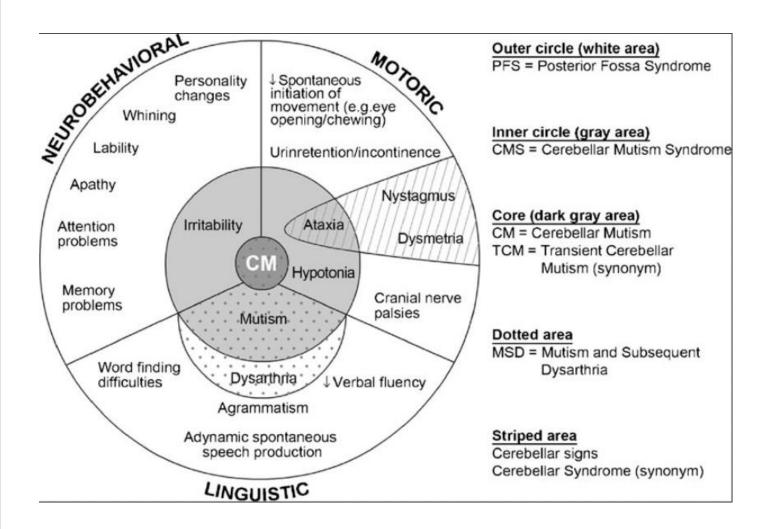
• To convert STR to resectable disease or on trial (VCR, Carbo, CPM, Etop)

• Pre or post-RT, not concurrent

*Radiation recommended for all ages with posterior fossa tumors (dose 54 Gy for < 18 months if GTR/NTR) and for all grade 3

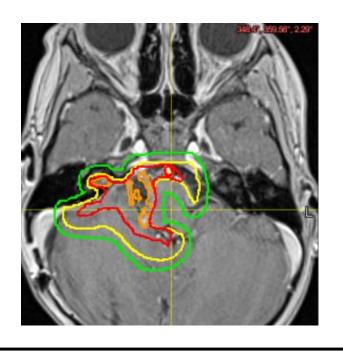
Additional work-up: Ophthalmology exam, audiology exam, baseline endocrine labs (baseline and yearly); neurocognitive testing (baseline and q2-3 years

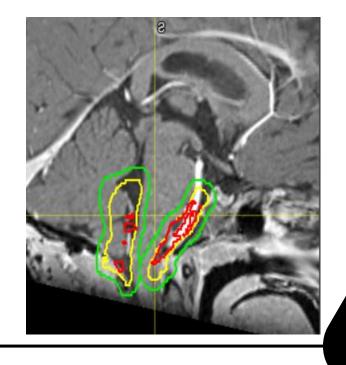
anaplastic ependymoma, WHO grade III

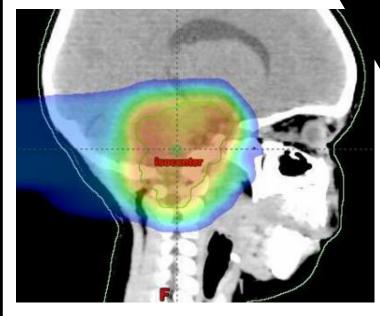

Op Note: "...a small amount of tumor densely adherent to cranial nerves and vascular structures and therefore not safe to remove and was left behind. The tumor was dissected from CN V- XI, vertebral artery, and PICA..."

Negative work-up, M0

54 Gy in 30 fxs tumor bed + 5mm + 5.4 Gy in 3 fxs to tumor bed = 59.4 Gy


Posterior Fossa Syndrome

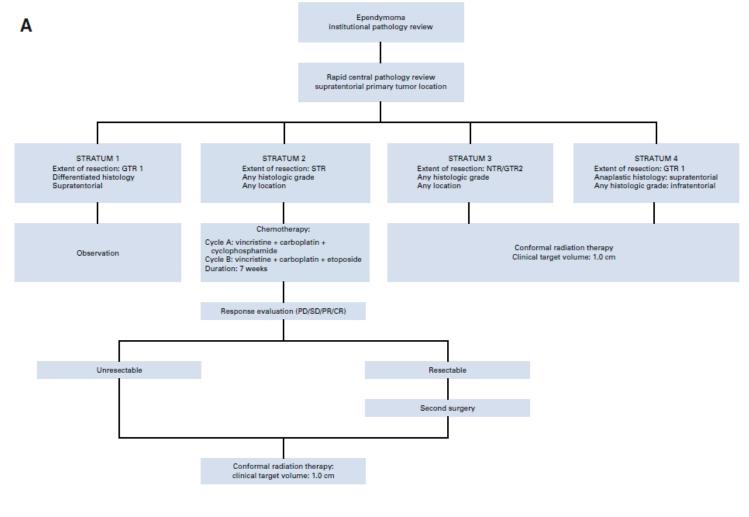

- Postop, the child had difficulty swallowing, was unable to speak, and had truncal ataxia
- Should radiation be delayed until these symptoms improve?
- No



Foramen of Luschka and lateral recess

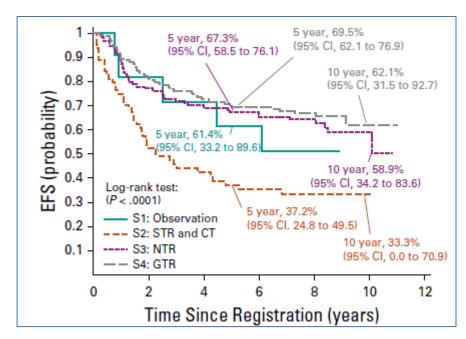
less enfor

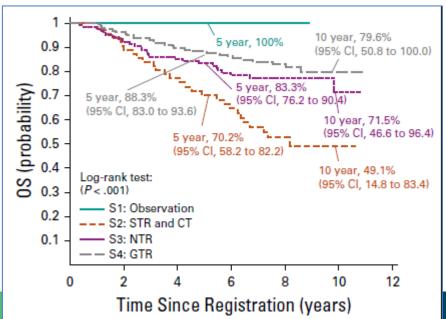
Initial phase


- GTV1: residual disease+ tumor bed
- CTV1: + 5-10mm
- PTV1: + 3mm

Boost phase

- GTV1 = GTV2 = CTV2
- PTV2: + 3mm


Variability across institutions on extending CTV in brainstem


ACNS0121

29% ≤ 3 years old

Merchant et al J Clin Oncol. 2019 Apr 20;37(12):974-983

Ependymoma: Molecular subtyping

- Outcomes not affected by RELA fusion status or PF-A/PF-B subgrouping by methylation status in ACNS0121
- Inferior outcomes with presence of 1q gain

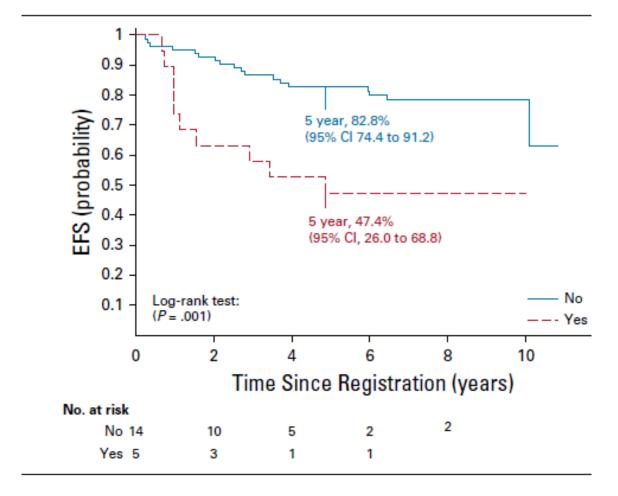
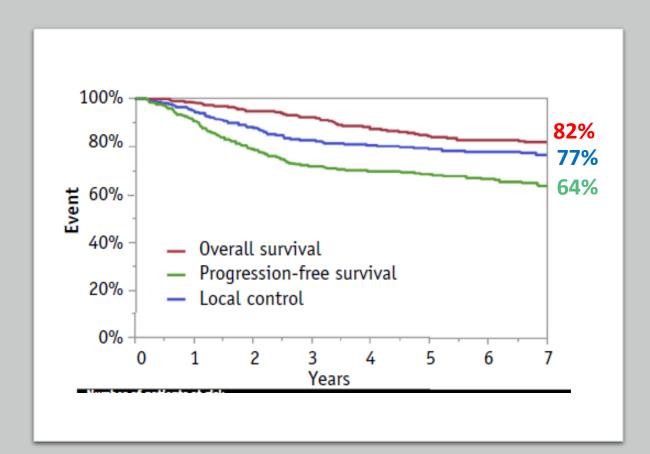
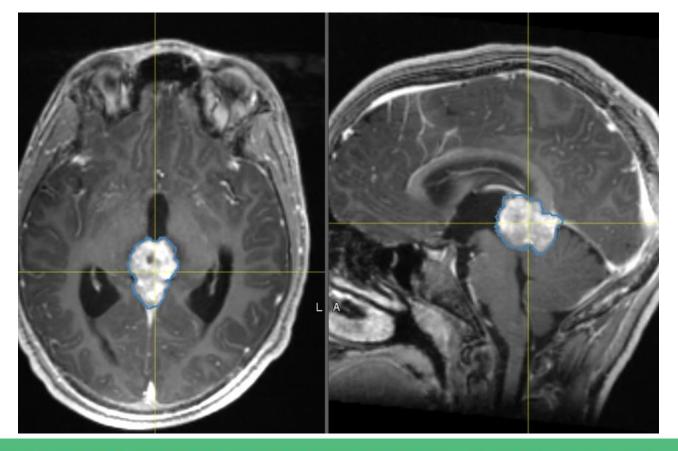



FIG 4. Event-free survival (EFS) for patients treated with immediate postoperadiation therapy (strata 3 and 4) according to 1q gain status.

Toxicity	Incidence	Duration to onset Median (range)	Radiation dose Median (range)	% of those affected < 5 years old
Brainstem necrosis	4%	4 months (3-7)	55.8GyRBE (52.2-59.4)	86%
Symptomatic non-brainstem CNS toxicity*	3.4%	36 months (5-132)	54 GyRBE (52.2-59.4)	100%
Second malignancy	1.3%	8 years (4-14)	Within high dose volume	80%


^{*}vascular events, non-brainstem necrosis

Outcomes: Intracranial Ependymoma

- Acute: dermatitis, alopecia, fatigue, headache, nausea, emesis
- Late: hearing loss, neurocognitive dysfunction, endocrinopathy, brainstem necrosis, second malignancy

Case 7

• 12 yo boy who enjoys riding his hoverboard presents with progressive headaches x 4 months

	GERMINOMA	NON-GERMINOMA
Tumor markers (serum & CSF)	AFP normal, βHCG normal to mild ↑	↑ AFP or ↑ βHCG possible
Biopsy	Required	Not required if tumor markers elevated but helpful to know histologic subtype
MRI spine and LP	Yes	Yes
Treatment paradigm	Chemo → Sx if incomplete response → RT Alternative: RT alone	Maximal safe resection → chemo → RT
Chemo drugs	Carboplatin & etoposide x 4 cycles Q 3 weeks	Carboplatin, etoposide, ifosfamide x 6 cycles induction, Q 3 weeks
Radiation volume for M0 disease	Whole ventricle + primary site boost	CSI + primary site boost
Radiation dose	PostChemo: 18 or 24 Gy WVV, 12 Gy boost to primary site @ 1.5 Gy/fx RT alone: WVV 25 Gy, 20-25.4 Gy boost	36 Gy CSI, 18 Gy boost to primary site @ 1.8 Gy/fx
Prognosis (5 yr PFS/OS)	88%/93%	60%/68%

Treatment course

3rd ventriculostomy with biopsy: germinoma

Carboplatin/etoposide x 4 cycles

Post-chemo MRI brain: 14 x 7 x 6mm

24 Gy WVV; 12 Gy boost

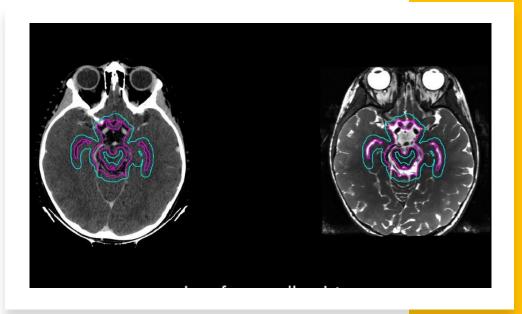
RESPONSE EVALUATION PR or SD or PD* CR/CCR PD with Increasing PR or SD ≤ 1.5 cm residual But > 0.5 cm Suprasellar or > Normalization Markers or No Normalization of Markers of Markers 1 cm Pineal Second-Look Normalization of Markers Surgery with <PR No Second-Look Surgery Second-Look Surgery* Off Protocol Therapy **RADIATION THERAPY** RADIATION THERAPY 24 Gy WVI + 12 Gy Viable Tumor 18 Gy WVI + 12 Gy Mature **Boost to the Primary** Teratoma or **Boost to the Primary** Non-Viable Tumor

ACNS1123

Tips for whole ventricular delineation

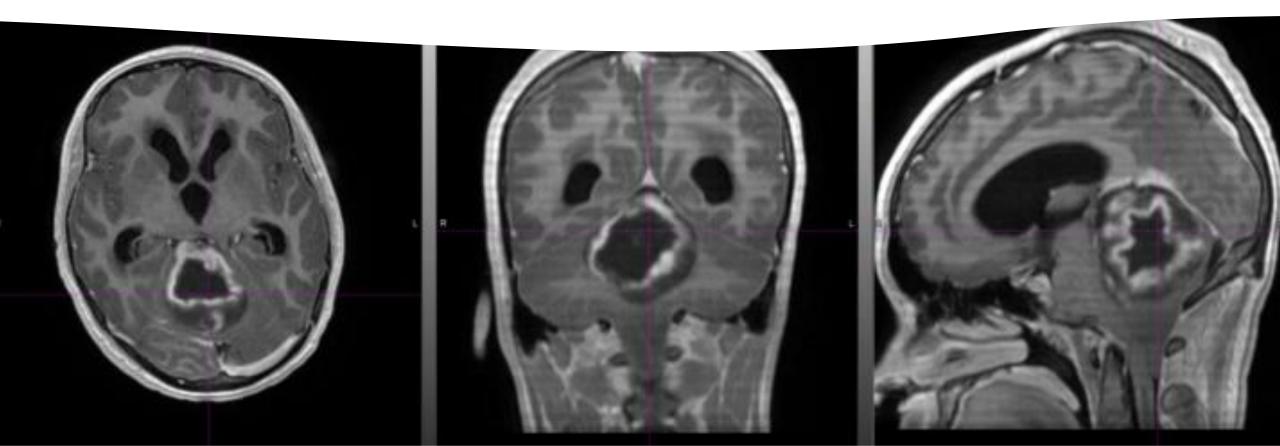
Encompass the lateral, 3rd and 4th ventricles suprasellar and pineal cisterns

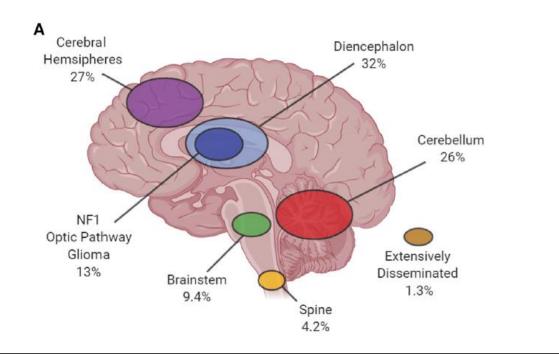
Include prepontine cistern in WVV CTV if 3rd ventriculostomy or large suprasellar tumor

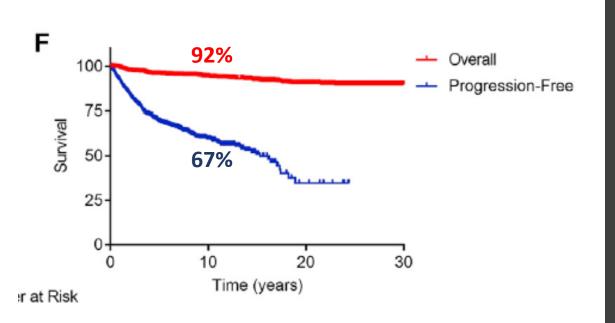

Ensure that initial WVV CTV encompasses the entire primary site boost CTV

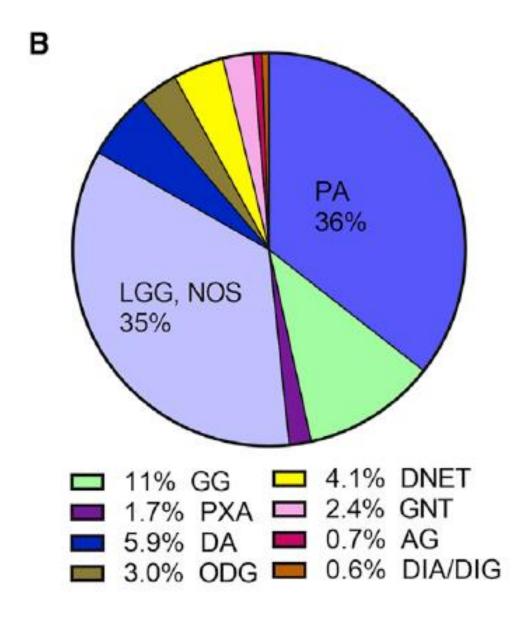
WVV contouring atlas @ https://www.qarc.org/cog/ACNS1123_Atlas.pdf

Need thin slice MRI (1-2mm); fuse and use T1 and **T2** sequences

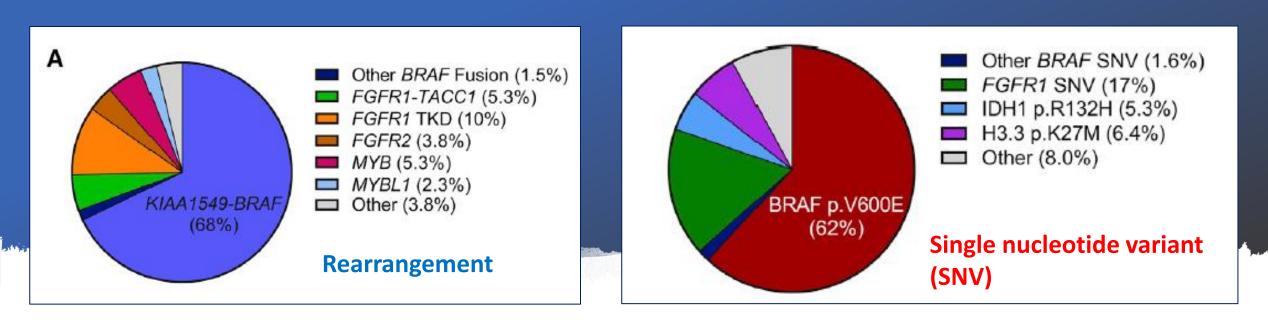

Whole Ventricle Target Volume Atlas for Germ Cell Tumors

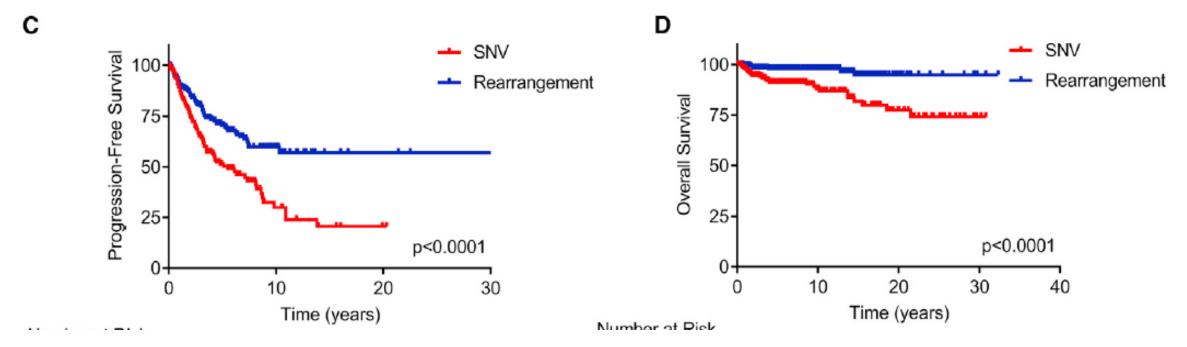

Children's Oncology Group
Guide for Protocol
ACNS 1123

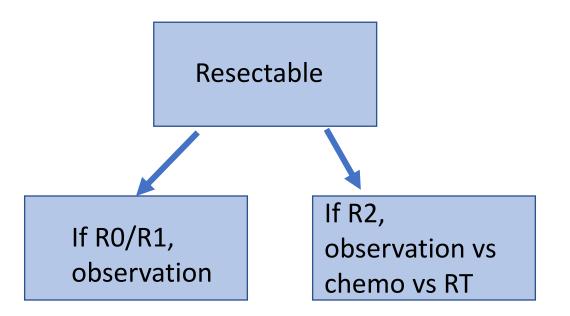


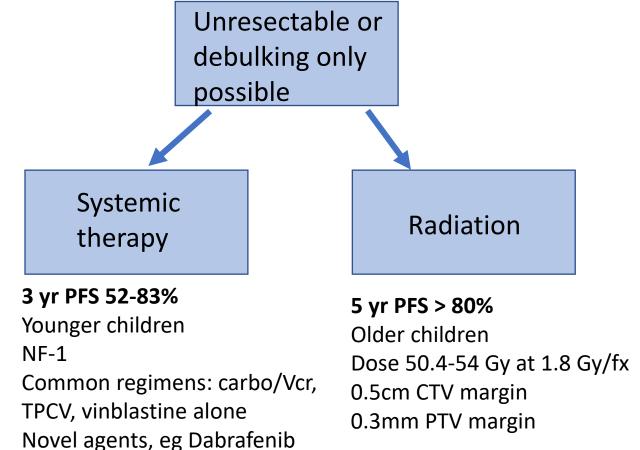

Case 8

- 16 yo boy presented with headaches, sluggishness, left facial droop and shaking
- MRI brain
- EVD placement and STR
- Pathology: WHO Grade I pilocytoic astrocytoma, IDH-1 equivocal, +GFAP, Ki-67 <1%, BRAF V600E negative, BRAF rearranged by FISH
- 2.7cm residual tumor on post-op MRI



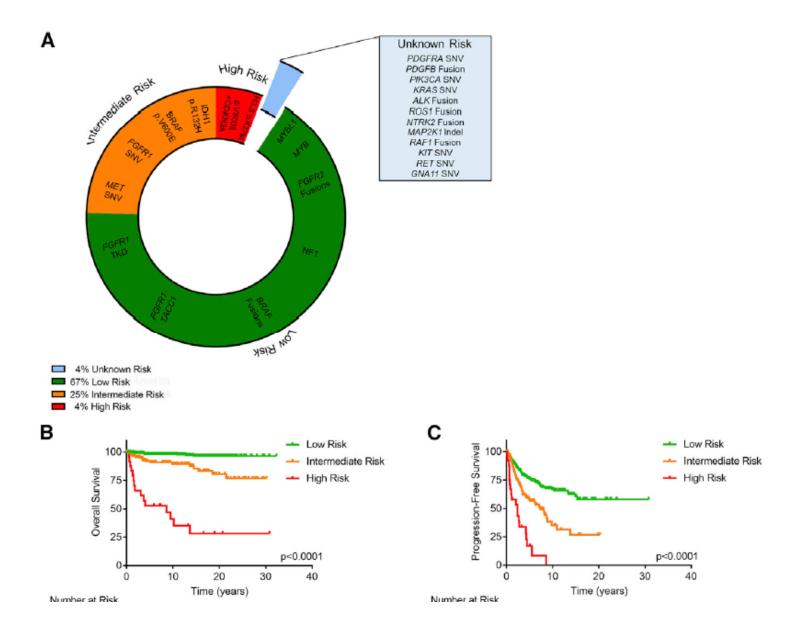



Ryall et al. Cancer Cell. 2020 Apr 13;37(4):569-583.e5



Ryall et al. Cancer Cell. 2020 Apr 13;37(4):569-583.e5

LGG: Treatment paradigm



de Blank et al. Curr Opin Pediatr. 2019 Feb;31(1):21-27

(BRAF inhibitor), Selumetnib

(MEK inhibition)

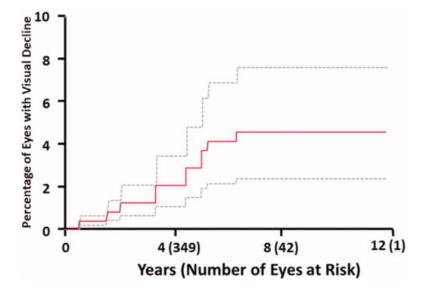
LGG: Ongoing considerations

Ryall et al. Cancer Cell. 2020 Apr 13;37(4):569-583.e5

Pseudoprogression

Definition: increase in tumor size by ≥10% in at least two dimensions between two and three consecutive MR imaging studies

10-year cumulative incidence of **29.0**%


Median time to pseudoprogression: 6 months after RT.

More common in pilocytic astrocytoma (43%)

For those with PA, improved 10-year EFS (84.5% vs. 58.5%, P = 0.008) and OS (98.0% vs. 91.2%, P = 0.03) if pseudoprogression

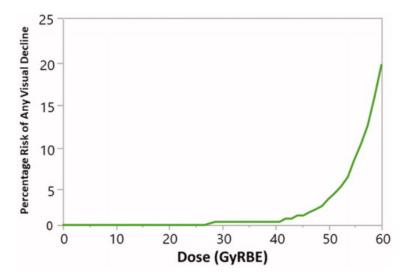
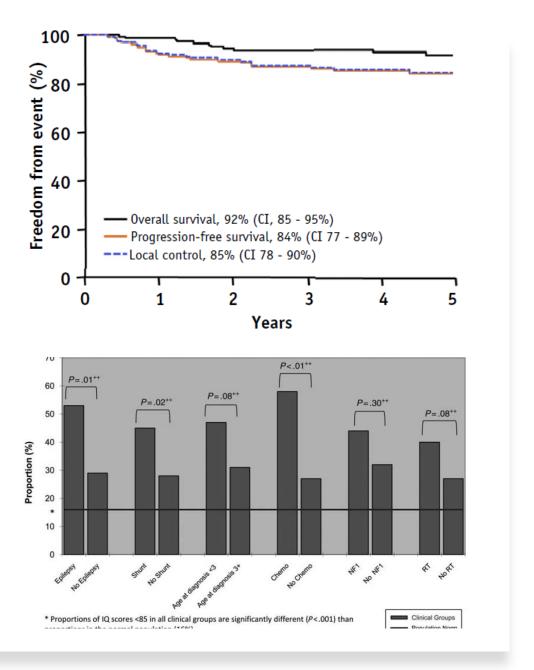

Visual toxicity

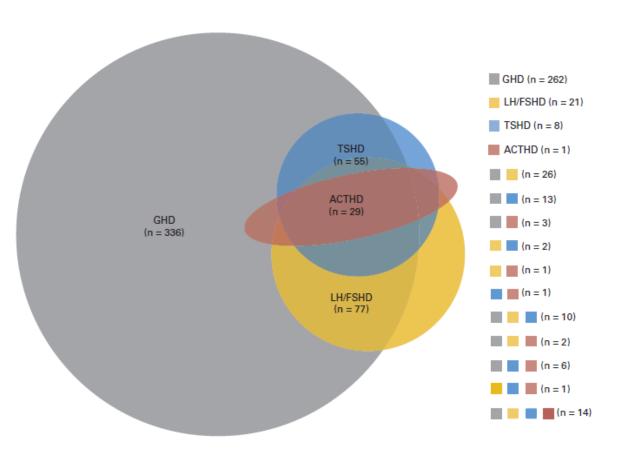
Figure 1. Cumulative incidence of visual acuity decline in the eyes of children treated with radiotherapy for intracranial tumors and at high risk of acuity decline.

 All visual decline occurred in children with primary tumors of the optic pathway or suprasellar region.

Figure 2. Logistic regression model of the risk of visual acuity decline by radiotherapy dose to 0.1 cm³ of the ipsilateral optic nerve or optic chiasm.


Risk of decline in visual acuity	Dose to 0.1 cm ³ ipsilateral optic nerve or chiasm
1%	52.7 GyRBE
5%	56.6 GyRBE
10%	58.3 GyRBE

Bates et al. Acta Oncol. 2020 Oct;59(10):1257-1262


Outcomes: LGG

Acute: dermatitis, alopecia, fatigue, headache, nausea, emesis

Late: retinopathy, hearing loss (2%), neurocognitive dysfunction, endocrinopathy (22%), stroke, vasculopathy (3%), necrosis, second malignancy

Endocrinopathy after cranial irradiation

	Probability of GH Deficiency (peak GH <7ng/ml) by Mean Hypothalamus Dose and Time											
Time	5Gy	10Gy	15Gy	20Gy	25Gy	30Gy	35Gy	40Gy	45Gy	50Gy	55Gy	60Gy
12mo	12%	14%	17%	19%	22%	25%	28%	31%	34%	38%	42%	45%
36mo	11%	18%	26%	37%	48%	59%	70%	79%	86%	91%	95%	97%
60mo	11%	22%	39%	57%	75%	87%	95%	98%	99%	100%	100%	100%

Chemaitilly et al. JCO. 2015 Feb 10;33(5):492-500

Merchant, ASTRO 2009

General Takeaways

- Important to know overall management in addition to the details of radiotherapy
- Use of molecular markers for prognosis and to direct treatment is increasing
- When there is a choice of surgery vs RT for local therapy, consider risks to form and function with each approach
- Long-term follow-up with active monitoring for toxicity is critical