Non Surgical NSCLC -Overcoming barriers to care – Diagnosis and Referrals

Megan Daly, MD, UC Davis Gregory Kalemkerian, MD, University of Michigan Janani Reisenauer, MD, Mayo Clinic Michael Simoff, MD, Henry Ford Health System

Webinar Series: Continuum of Care for Non-Resectable NSCLC

-Today is the first of a 3-part webinar series focused on the multidisciplinary care of non-resectable lung cancer patients and focuses on the *workup and referral* of the suspected and newly diagnosed lung cancer patient

Webinar 2: July 21 at 6:00 p.m. ET - Non Surgical NSCLC - Best Practices for the Continuum of Care: A Multidisciplinary Approach

Webinar 3: August 16 at 6:00 p.m. ET - Non Surgical NSCLC - Challenging Cases

Overview

Lung cancer screening Patient Evaluation and Workup Diagnostic Procedures for Lung Cancer Molecular Markers in NSCLC Multidisciplinary Team Care -Surgical Evaluation -Evaluation for SBRT -Locally Advanced NSCLC: Standard treatment and clinical trials

Discussion and audience questions

Goals of the Webinar

-Overcome barriers to timely and appropriate care for lung cancer patients

-Ensure appropriate assessments and staging are obtained for suspected and newly diagnosed lung cancer patients

-Review role of the multidisciplinary team in the workup and management of lung cancer patients

LUNG CANCER SCREENING

Michael Simoff, MD

Lung Cancer: Newly Diagnosed

- Current Smokers: 35%
- Former Smokers: 50%
- Never Smokers: 15%

www.alamy.com - D7WE2X

Lung Cancer: Prevention

- 1. Primary: Smoking Cessation
 - a. Decrease overall lung cancer deaths
 - b. Most people who die from lung cancer are FORMER SMOKERS
- 2. Secondary: Lung Cancer Screening
 - a. Find early stage cancer
 - b. Decrease mortality, not incidence

History Of Lung Cancer Screening

Biannual CXR

• NW London Mass Radiography Service (1968)

<u>CXR – Sputum</u>

- Memorial Sloan Kettering (1984)
- Johns Hopkins Study (1984)
- Mayo Lung Project (1986)
- Czechoslovakian Study (1986)

LDCT vs CXR

- Keneko et al. (1996)
- Sone et al. (1998)
- ELCAP (1999)

Annual LDCT

- Germany (2002)
- Japan (2002)
- Italy (2003)
- Lung Screening Study (2004)
- Mayo Clinic LDCT study (2005)

National Lung Screening Trial (NLST) N Engl J Med 2011; 365:395-409august 4, 2011

- NLST was a NCI and ACRIN sponsored controlled trial
 - 53,000 high-risk subjects randomized to either
 - 3 annual chest radiographs (CXR) or
 - 3 annual low-dose chest CT (LDCT) exams

- Inclusion criteria included:
 - Aged 55-74
 - Current or former smokers (quit within the past 15 years)
 - >30 pack-year smoking history.

The study was halted early (11/2010) due to attainment of 20% mortality benefit goal in LDCT group.

NLST And Stage Shifting In Lung Cancer Diagnosis

Stage	AJCC - NSCLC	Positive Lung
		Cancer Screen
I	24%	63%
II	6%	7%
IIIA /IIIB	23%	8-9%
IV	44%	13%
Early Stage (LUI)	200/	700/
carry stage (1-11)	30%	/0%
Late Stage (III-IV)	70%	30%

Low Dose CT Scanning

- Multidetector computed tomography (MDCT) resolution allows for dose reduction
- Most LDCT <1mSv / Mammography 0.7mSv

10 mSv

Chest CT Interpretation and Lung Cancer Screening

• Fleischner Society Criteria:

- Used to categorize incidental findings on lung CT scans
- Have subsequently developed screening recommendations

• LungRADS (ACR)

- Purpose: Establish a standardized quality assurance tool to mirror the tool widely utilized in Mammography (BI-RADS)
- Developed to interpret screening studies of the chest to decrease false positive rate
- Objectives:
 - Standardize terminology
 - Organized reporting and assessment structure
 - Data collection tool to facilitate outcome monitoring

Re-evaluation with LungRADS

	Through May 2014 (IACP		Positive Thresholds		
	publication)		NLST Fleischner	LungRADS	
		Negative/Benign (LungRADS 1 & 2)	1185 73.99	6 1435 89.5%	
		Positive (LungRADS 3&4)	<mark>26.1%</mark>	10.5%	
dn-/		Probably Benign (LungRADS 3)	352 22.0%	5 102 6.4%	
Mol	()	Suspicious (LungRADS 4)	66 4.1%	66 4.1%	
al Fol	10T=U	 Diagnosed lung cancer Positive exam result Includes 3 cases of presumed malignancy¹ 	29 (1.8%)	29 (1.8%)	
linio		Positive Predictive Value	6.9%	17.3%	
U		 Biopsy-proven lung cancer Positive exam result Excludes 3 cases of presumed malignancy⁴ 	26 (1.6%)	26 (1.6%)	
	Positive Predictive Value		6.2%	15.5%	

Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement December 30, 2013

- Recommendation: The **USPSTF** recommends annual screening for lung cancer with low-dose computed tomography in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to curative lung surgery. (B-recommendation)
- B-recommendations from USPSTF qualifies a screening study to be covered by insurance with no deductible

CMS and Lung Cancer Screening

- Initially rejected by CMS but was later accepted with modified patient population:
 - Age 55-77 years (USPSTF recommendation 55-80 years)
 - Asymptomatic (no signs or symptoms of lung disease)
 - Tobacco smoking history of at least 30 pack-years
 - One pack-year = smoking one pack per day for one year;
 - 1 pack = 20 cigarettes
 - Current smoker or one who has quit smoking within the last 15 years

JDM: Joint Decision-Making Appointment (Must be documented in note)

 Age eligibility 	Counseling on the importation		ance of:
• No signs or symptom	Time required to	o complete: 20-25	lung cancer LDCT
 Specific calculation of years 	minutes with an organized PowerPoint presentation by trained personnel		ties on testing and
 Former smoker, years 	since quitting	Ability or willingposs	to undergo diagnosis
• Use of one or more d	Code G0296		
 Benefits and harr 	Physician Offic	e Billing: \$28.64	portance of
 Follow-up diagno needed 	stic testing potentially	former smoker;	smoking abstinence if
 Define: Over-diagnos 	is	 Or the importance of current smoker 	smoking cessation if
 False positive 	rate	Tobacco cessatio	n discussion/referral
Explain total radia	ation exposure and risks	 Data to be uploaded (ACR) 	to national database

Lung Cancer Screening Programs

Centralized

- Organized from single office for entire health system
- Administrative and medical structure
- Centralized databasing
- JDM structure
- Pipeline to advanced testing or diagnostic procedures

Decentralized

- Independent physicians must perform JDM as part of visits
- Order screening CTs
- Review screening CTs and follow recommendations
- Consult appropriate specialists pending results

Lung Cancer Screening At HFH: Centralized Program

	Screening CT	
Year	Complete	Lung Cancer
2011	3	
2012	12	
2013	28	
2014	569	1
2015	222	1
2016	754	9
2017	131	30
2018*	2164	32
2019	3314	57
2020	3495	65
Total	11992	195

- 2011: Out of pocket \$350
- 2013: Out of pocket to \$99 in last quarter
 - 22 scans in last quarter
- 2014: Marketing of \$99 scans
- 2015: CMS covers LCS CT scans
- 2018: Became centralized program

HFH Data 2019 & 2020

2019

2020

Screening CTs

Initial	2470
Subseq	844
Total Scans	3314

Screening CTs

Initial	1766
Subseq	1715
Total Scans	3495

New Cancers	57
Smoking cessation referrals	1106

New Cancers	65
Smoking cessation referrals	896

Number Needed to Screen

Concluding Remarks

- 450 Americans die per day due to lung cancer
 - Lung cancer screening can begin to reduce this number
- Screening is based on excellent data
- Primary care physicians do not have the time to perform actual JDM
- Research needs to be supported for further evaluation of:
 - Additional high-risk populations

mini

- The use of concurrent liquid or exhaled markers of risk
- How to maximize integration and follow-up
- The influence of S-modifiers to further evaluation and management of patients
- Education of the entire medical community is needed
- Screening must be developed as a system-wide program or a centralized structure needs to be constructed at regional or the state level to manage LCS programs
- Newest USPSTF Guidelines will improve screening opportunities

LUNG CANCER PATIENT EVALUATION AND WORKUP

Janani Reisenauer, MD

Cognitive Processes

Initial Evaluation

Diagnosis and Staging

Develop Treatment Plan

Clinical Processes

Clinical Approach to Lung CA

Initial Evaluation—History

• Risk Factors

• Smoking, Age, Prior Cancer, Occupational exposure

Pulmonary symptoms

• Cough, dyspnea, wheeze, hemoptysis

Extrapulmonary symptoms

• Local compression

mini

- Pain, dysphagia, voice changes, hoarseness
- Distant metastases & Paraneoplastic syndromes
 - Weight loss, fatigue, anorexia
 - Headache, nausea, weakness

• Functional Status assessment

Initial Evaluation—Symptoms

FIGURE 3. [Section 2.0] Range of frequencies of initial symptoms and signs of lung cancer.

Symptoms and Signs	Frequency, %
Cough	8-75
Weight loss	0-68
Dyspnea	3-60
Chest pain	20-49
Hemoptysis	6-35
Bone pain	6-25
Clubbing	0-20
Fever	0-20
Weakness	0-10
SVC obstruction	0-4
Dysphagia	0-2
Wheezing and stridor	0-2

Initial Evaluation—Paraneoplastic

FIGURE 5. [Section 3.0] Paraneoplastic syndromes in patients with lung cancer.

Endocrine syndromes	SIADH	Hypoglycemia
	Nonmetastatic hypercalcemia	Hyperthyroidism
	Cushing syndrome	Carcinoid syndrome
	Gynecomastia	Hypercalcitonemia
	Elevated levels of LH and FSH	
Neurologic syndromes	Subacute sensory neuropathy	Encephalomyelitis
	Intestinal pseudoobstruction	Necrotizing myelopathy
	Lambert-Eaton myasthenia syndrome	Mononeuritis multiplex
	Cancer associated retinopathy	
Skeletal syndromes	Hypertrophic osteoarthropathy	Clubbing
Renal syndromes	Glomerulonephritis	Lactic acidosis
	Nephrotic syndrome	Hypouricemia
	Metabolic syndromes	
Systemic syndromes	Anorexia and cachexia	Fever
Collagen-vascular syndromes	Dermatomyositis	Vasculitis
	Systemic lupus erythematosus	Polymyositis
Cutaneous syndromes	Acquired hypertrichosis languinosa	Exfoliative dermatitis
	Erythema gyratum repens	Acanthosis nigricans
	Erythema multiforme	Sweet's syndrome
	Tylosis	Pruritus and urticaria
	Erythroderma	
Hematologic	Leucocytosis and eosinophilia	Anemia
	Leukemoid reactions	Thrombocytosis
	Thrombocytopenic purpura	
Coagulopathies	Disseminated intravascular coagulation	Thromboembolism

Initial Evaluation—Metastasis

FIGURE 1. [Section 2.0, 3.0] Clinical findings suggesting metastatic disease.

Component	Findings
Symptoms elicited in history	Constitutional: weight loss (>10 lb), anorexia, fatigue Musculoskeletal: focal skeletal pain Neurological: headaches, syncope, seizures, extremity weakness, recent changes in mental status
Signs found on physical examination	Supraclavicular lymphadenopathy (>1 cm) Hoarseness, superior vena cava syndrome Bone tenderness Hepatomegaly (>13-cm span) Focal neurologic signs, papilledema Soft-tissue mass
Routine laboratory tests	Hematocrit <40% in men, <35% in women Elevated alkaline phosphatase, GGT, AST, or calcium levels

Imaging Studies

• CT scan

- Tumor size
- Satellite nodules
- Atelectasis
- Local Invasion
- Mediastinal adenopathy

• MRI chest

- Pancoast tumors
- Evaluation of chest wall involvement
- Mediastinal and vessel involvement

PET Scan

Provides information on Primary tumor Mediastinal LN Distant metastases Metabolic activity of the tumor Response to therapy Planning radiation treatment Limitations Tumour size <8mm Carcinoid tumors GGO Mucinous tumors $FP \rightarrow$ inflammatory, infectious, postobstructive

Extrathoracic Staging

- PET/CT more accurate than CT or PET alone
 - Anatomic details + metabolic function merged
- Prediction of T-stage
 - PET/CT \rightarrow 86%
 - PET → 46%
 - CT → 68%

De Wever W, et al. Eur Respir J. 2009; 33:201-21 De Wever W, et al. Eur Radiol. 2007;17: 23-32

DIAGNOSTIC PROCEDURES FOR LUNG CANCER

Michael Simoff, MD

DIAGNOSTIC PROCEDURES FOR LUNG CANCER

Peripheral nodules

Mediastinal staging

THE HUMAN LUNG

- 22-24 generations
- >100,000 bronchi, bronchioles
- 1500 miles of airways
- 300-500 million alveoli
- 0.3mm in diameter
- Surface area 70m²
- Capillaries 616 miles end to end

WHITE LIGHT BRONCHOSCOPY

Superficial airway evaluation

ADVANCED DIAGNOSTIC TECHNIQUES

- Autofluorescence
- Radial Probe Endobronchial Ultrasound
- EBUS TBNA
- Electromagnetic Navigation
- CT Fluoroscopy / Cone Beam CT Guided Bronchoscopic Biopsies
- Cyrobiopsies
- Robotic Bronchoscopy

DIAGNOSTIC PROCEDURES FOR LUNG CANCER

Peripheral nodules

Mediastinal staging

EBUS GUIDED TBNA

- Needle is extended with both visual and ultrasound imaging
- Incorporate a directional ultrasound probe into a bronchoscope
- Real time transbronchial specimens

ENDOBRONCHIAL ULTRASOUND GUIDED TRANSBRONCHIAL NEEDLE ASPIRATION

"Endobronchial Ultrasound Directed				
Transbronchial Needle Aspiration, International				
Introduction of a New Technique"				
American College of Chest Physicians				
Chest 2003 Meeting				
Orlando, FL				
October 2003.				
	<u>riberscope</u>	videoscope		
Outer Diameter:	6.7mm	6.2mm		
Working Length:	550mm	600mm		

LYMPH NODE STATIONS

Michael J. Simoff, M.D. CONTINUUM OF CARE FOR NON-RESECTABLE NSCLC

LUNG CANCER AND NEGATIVE CT SCANS

CT negative lymph nodes

- 100 patients, all nodes less than 10mm in short access
- EBUS-TBNA followed by thoracotomy or mediastinoscopy
- Mean diameter 8.1mm
- When appropriate LN are biopsied
 - 22% positive for malignancy
 - 16% had a change in therapy

Herth et al. Eur Resp J 2006

LUNG CANCER AND NEGATIVE PET SCANS

CT & PET negative lymph nodes

- 97 patients negative PET/CT scans
 - Mean diameter 7.9mm
- When appropriate LN are biopsied
 - 8% positive for cancer
 - 6% had a change in therapy

Herth et al. Chest 2008

EBUS vs. MEDIASTINOSCOPY

	Lymph node size in mm: Mean ± SD	EBUS yield (%)	Mediastinoscopy yield (%)	p value*
All Lymph Nodes	15 ± 2.6 (10-21)	109/120 (91)	94/120 (78)	0.007†
LN stations				
2 all	16 ± 3.1 (10-21)	24/25 (96)	22/25 (88)	0.30
2 right	18 ± 1.6 (14-20)	12/13 (92)	11/13 (85)	0.99
2 left	14 ± 3.6 (10-21)	12/12 (100)	11/12 (92)	0.99
4 all	15 ± 2.6 (10-19)	45/54 (83)	40/54 (74)	0.24
4 right	15 ± 2.6 (10-19)	29/34 (85)	24/34 (71)	0.14
4 left	15 ± 2.6 (10-19)	16/20 (80)	16/20 (80)	0.99
7	15 ± 2.4 (10-19)	40/41 (98)	32/41 (78)	0.007†

Ernst A et al., JTO, 2008

CONTINUUM Michael A Signoff M. RON-RESECTABLE NSCLC

"The prospect of cure depends on stage."

Stefano Gasparini, MD Heidelberg, Sept. 2002

"If you don't look at lymph nodes, everyone has stage I nonsmall cell lung cancer."

Malcome DeCamp, Jr. MD Beth Israel Deaconess

DIAGNOSTIC PROCEDURES FOR LUNG CANCER

Peripheral nodules

Mediastinal staging

SOLITARY PULMONARY NODULES

TRANSBRONCHIAL BIOPSY OF SPN

- Peripheral lesions are beyond bronchoscopic visualization
- Sampling techniques are guided using fluoroscopy
- Lesions that are < 2 cm not visible with fluoroscopy

EBUS AND PERIPHERAL LESIONS

mini

- A lung nodule/mass is soft tissue, therefore will transmit ultrasound waves very efficiently
- When the waves run into lung, it causes a very distinct edge, with much of the sound reflected back

ELECTROMAGNETIC NAVIGATION

CURRENT DIAGNOSTIC YIELDS FOR ELECTROMAGNETIC NAVIGATION

- Clinical experience trials: Becker 2005, Schwarz 2006, Gildea 2007, Makris 2007, Eberhart 2007, Wilson 2007, Weiser 2008, Bertoletti 2009, Lambrecht 2009, Eberhardt 2009, Zhang 2015
- All authors with yields in the 70-75% range
- 4 meta-analyses report 70% average yield
- These studies were at academic centers
- Studies of all users have demonstrated yields of <50%

ELECTROMAGNETIC NAVIGATION

- superDimension LTD
- **Five Systems released** first year

- HFH
- 2005

CONE BEAM CT

CONE-BEAM CT WITH AUGMENTED FLUOROSCOPY AND ENB

- <u>Diagnostic Yield*</u>
 - All lesions 83.7%
 - <10mm (n=19) 84.2%</p>
 - <20mm (n=65). 83.1%
 - >20mm (n=27). 96.3%
- Sensitivity for Malignancy
 - 91.3% 95.5%
- Prevalence of Malignancy
 - 71.7% 75.0%

mini

- Diagnostic Accuracy**
 - All lesions 93.5%
 <a href="mailto:
 <a href="mailto:
 <a href="mailto:
 <a href="mailto:93.5%
 - <20mm (n=65). 90.8%
 - >20mm (n=27). 100%
- <u>Negative Predictive Value</u>
 - 79.3% 89.7%
- Average CBCT scans per case: 1.5
 - Average effective dose of 2.0 mSv per CBCT scan

* Diagnostic yield only included definitive malignant or benign diagnoses and excluded all indeterminate results **Diagnostic accuracy represents the malignant and benign lesions as well as the indeterminate lesions confirmed as benign with clinical and radiographic follow-up divided by the total number of lesions biopsied.

JOBIP 2018; 25:273-281

CURRENTLY AVALIABLE BRONCHOSCOPIC ROBOTS

Intuitive Ion

ROBOTIC BRONCHOSCOPY

Requirements for Robotic Bronchoscopy

- Reach
- Access
- Control Stability
- Location feedback
- Ability to perform more complex procedures

FIRST-IN-MAN FEASIBILILITY STUDY: AURIS

- 2014
- Proof of concept
- Robotic endoscopy performed in 15 patients with pulmonary lesions
- Specimens successfully obtained in 14/15 patients using the robotic platform
- No serious adverse events noted

Rojas-Solano J, et al. J Bronchology Interv Pulmonol. 2018

FIRST-IN-MAN INTUITIVE: RESULTS

D. Fielding. First Human Use of a New Robotic-Assisted Navigation System for Small Peripheral Pulmonary Nodules Demonstrates Good Safety Profile and High Diagnostic Yield. CHEST 2017 Conference

CASE 1: LUL Nodule

CASE 2: Pleural Based Nodule

ID: NAME: A	GE:
008: 5	EA:
05/04/202	
20MHz G:19/19 I C:3/8	2cm :s
MEDIA	
T/B:CINE 1/108	REV
CNCT : R	I share a second second second second

CASE 3: Aortic Arch

CASE 4: Descending Aorta

CLOSING COMMENTS

- Appropriate accurate mediastinal staging is paramount to optimal clinical outcomes
- We are seeing a greater number of nodules than ever before
- Robotic bronchoscopy provides a stable platform for performing biopsies and appear to improve clinical diagnostic yield
- Robotics potentially creates a platform to move into endobronchial therapy that was not available before

Molecular Markers in Non-Small Cell Lung Cancer

Greg Kalemkerian, MD Medical Oncology University of Michigan

NSCLC Biomarkers: What to Test

- Immunohistochemistry (IHC):
 - FDA-approved therapy associated with:
 - PD-L1 tumor proportional score [TPS]
 - Requires tissue/cells histology, cytology, cell block
 - Cannot be done on blood (ctDNA, "liquid biopsy")

NSCLC Biomarkers: What to Test

- <u>Next Generation Sequencing (NGS)</u>:
 - FDA-approved therapies associated with:
 - Mutations: EGFR, BRAF V600E, MET exon 14 splice, KRAS G12C
 - Rearrangements: *ALK, ROS1, RET, NTRK*
 - Microsatellite instability (MSI)
 - Tumor Mutational Burden (TMB)
 - Other markers may suggest investigational therapy (e.g. *HER2*)
 - Can be done on histology, cytology or ctDNA ("liquid biopsy")

NSCLC Biomarkers: When to Test

- Stage II-III resected adenocarcinoma:
 - EGFR mutations to guide adjuvant therapy with osimertinib
- Stage III any histology:
 - NGS may identify lack of utility of immunotherapy (e.g. *EGFR*-mut)
- Stage IV:
 - NGS to guide targeted therapy (adenoca and non-smoking SqCCa)
 - PDL1 TPS to guide immunotherapy (all histologies)

ADAURA: Adjuvant Osimertinib in EGFR+

- Stage IB-IIIA, completely resected
- EGFR deletion 19 or L858R
- Osimertinib vs. Placebo × 3 years
- 60% received adjuvant chemo
- 1° endpoint = DFS in stage II & IIIA
- Unplanned IDMC (2 years early)

mini

- Enrollment complete all pts out > 1 year (29% mature)
- N Osimertinib = 339, Placebo = 343

A Patients with Stage II to IIIA Disease 2 - yr = 90%0.9 0.8 Survival 0.7 Osimertinib Probability of Disease-free 0.6-0.5-2 - vr = 44%0.4-Median Disease-free Surviva (95% CI) 0.3mo Osimertinib NR (38.8-NC) Placebo 0.2-Placebo 19.6 (16.6-24.5) Hazard ratio for disease recurrence 0.1 or death, 0.17 (99.06% CI, 0.11-0.26) P<0.001 0.0 12 18 24 30 36 48 Months since Randomization No. at Risk Osimertinib 233 219 189 137 97 52 18 0 51 27 237 190 127 82 9 0 Placebo

• Overall survival data is immature

Wu, et al. NEJM 383:1711, 2020

First-line chemotherapy ± bevacizumab

Multidisciplinary Team Care

Greg Kalemkerian, MD Medical Oncology University of Michigan

Lung Cancer Multidisciplinary Team

- Medical Oncology
- Radiation Oncology
- Thoracic Surgery
- Pulmonary Medicine
- Interventional Pulmonary
- Palliative Care

- Diagnostic Radiology
- Interventional Radiology
- Nuclear Medicine
- Anatomic Pathology
- Molecular Pathology

 Physicians, Advanced Practice Providers, Housestaff, Nursing Staff, Research Coordinators, Clinical Coordinators, Patient Navigators, Social Workers

Lung Cancer MD Tumor Board

- Systematic Review (Coory, et al. Lung Cancer 60:14-21, 2008)
 - 16 studies (1 randomized, 7 before-after cohorts)
 - 2 of 5 studies showed improved survival with Tumor Board
 - Tumor Board → increased formal staging, decreased time to treatment, more curative treatment (surgery, RT)
- Deviations from TB recommendations (Osarogiagbon, et al. JTO 6:510-516, 2011)
 - N=376 patients; 37% with care discordant from TB recommendations
 - Discordance → delay in therapy (p=0.002), decreased PFS (p=0.02, HR 1.4), decreased OS (p=0.004, HR 1.7)

LUNG CANCER: SURGICAL EVALUATION

Janani Reisenauer, MD

Lung Cancer Surgery

- Surgical Treatment
 - Remove the affected part of the lung
 - Wedge resection removes a wedge of lung
 - Segmentectomy removes an anatomic segment of lung
 - Lobectomy remove a lobe of the lung
 - Bilobectomy remove 2 lobes
 - Pneumonectomy remove an entire lung
 - Mediastinal lymphadenectomy
 - Removes lymph nodes from the mediastinum
 - Can be done OPEN, VATS OR RATS
 - No difference in literature between VATS and RATS
 - MIS should be considered for all stage I lung cancer, and many stage II and III
 - Neoadjuvant treatment, prior surgery, or central tumor are not absolute contraindications for MIS

Functional status

- Pulmonary Function testing
- V/Q
- Arterial Blood Gas
- Cardio Pulmonary Exercise Test

Candidacy

- PPO FEV_1 = preoperative $FEV_1 \times (1 y/z)$
- PPO DLCO = preoperative DLCO $\times (1 y/z)$
 - y = Number of functional or unobstructed lung segments removed.
 - z = Total number of functional segments
- % PPO FEV_1 = computed PPO $FEV_1 \times 100/\text{predicted normal } FEV_1$
- % PPO DLCO = computed PPO DLCO × 100/predicted normal DLCO
- <u>Criteria strongly suggesting inoperability include PO₂ of <45 mm Hg,</u> <u>PCO₂ of >60 mm Hg, predicted postoperative DL_{CO} of <40%, predicted postoperative FEV₁ <40%, or a VO₂max of <10 mL/kg per minute.
 </u>

PULMONARY FUNCTION TESTING

SPIROMETRY

	NORMAL	LLN	FOUND	%PRED.	FOUND	%CHNG	%PRED.
VC MAX	3.16	2.32	2.71	86 %	2.80	3 %	89 %
FVC	3.16	2.32	2.71	86 %	2.80	3 %	89 %
FEV 1	2.45	1.79	0.97	40 %	0.99	1 %	40 %
FEV1/FVC	78.0	65.0	35.9	46 %	35.2	-2 %	45 %
FEF25-75%	2.03	0.96	0.27	13 %	0.30	12 %	15 %
PEF	5.8	3.2	2.8	48 %	3.0	7 %	51 %
FET			14.72		19.69	34 %	

DIFFUSION CAPACITY

	NORMAL	LLN	FOUND	%PRED.	FOUND	%PRED
DLCO_SB	21.3	16.1			9.7	45 %
DLCOcSB	21.3	16.1			9.5	45 %
Hb					14.00	
VA_SB	5.23	4.18			5.02	96 %

CARDIOPULMONARY EXERCISE TESTING

- VO2 (oxygen consumption) test
- stress test that measures your exercise ability
- Information about the heart and lungs is collected to understand if the body's response to exercise is normal or abnormal.
- Values measured in ml/kg/min; anything less than 10 is prohibitive for surgery

VENTILATION PERFUSION SCAN

PERFUSION:

RIGHT: Upper = 5%; Mid = 4%; Lower = 4%; Total = 13%

LEFT: Upper = 37%; Mid = 42%; Lower = 9%; Total = 87%

MINIMALLY INVASIVE SURGERY

- Avoids breaking rib or cutting muscles
- Shorter LOS
- Less pain
- Faster recovery
- Less scar tissue formation

SBRT for Early-Stage Lung Cancer

Megan E. Daly MD Professor of Clinical Radiation Oncology University of California Davis Comprehensive Cancer Center

Overview: SBRT for Early-Stage NSCLC

- Standard of care for node negative, medically inoperable, early-stage NSCLC
- Delivery of 1-5 (+) fractions using highly conformal techniques with steep dose gradients, precise immobilization, and motion management
- Goal of ablating tumor

RTOG 0236 Outcomes

Failure Patterns	3-year ¹	5-year ²
Primary tumor control	97.6%	93%
Local (primary + involved lobe)	90.6%	80%
Locoregional control	87%	62%
Distant Control	77.9%	69%
Disease-Free Survival	48.3%	26%
Overall Survival	55.8%	40%
Grade 4+ Adverse Events	3.6%	3.6%

¹Timmerman R et al, Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA March 2010

²Timmerman RD et al, Long-term Results of RTOG 0236: A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Medically Inoperable Stage I Non-Small Cell Lung Cancer. JAMA Oncology

Patient Selection for SBRT

- Tumor location (central versus peripheral)
- Tumor size
- Patient performance status and lung function
- High risk clinic features such as interstitial lung disease

SBRT for Central Tumors

- Frequently defined by the guidelines established in the early IU SBRT trials: within 2 cm of the proximal bronchial tree, defined as the distal 2 cm of the trachea, the mainstem and lobar bronchi
- RTOG 0813 also included tumors with PTV touching/ overlapping mediastinal pleural
- Term "ultracentral" not standardized, but typically refers to tumors with PTV touching or overlapping PBT, trachea, esophagus, +/- great vessels. Tumors abutting the esophagus are often included as they are particularly high risk for esophageal injury.

Prospective Outcomes using SBRT for Central and Ultracentral tumors

	RTOG 0813 (JCO 2019)	HILUS Trial (JTO 2021)
Eligibility	Within 2 cm of PBT or PTV touching mediastinal pleura	Within 1 cm of mainstem or lobar bronchus
Prescription Dose	50-60 Gy in 5 fractions	56 Gy in 8 fractions
Isodose Line	60-90%	65-70%
Dose constraint(s) to Proximal Bronchial Tree	Max <105% of prescription dose <4cc of non-adjacent wall to 18 Gy	Max to contralateral mainstem bronchus/ trachea<48.8 Gy Guideline max< 56 Gy to ipsilateral mainstem bronchus
Dose constraints to great vessels	Max < 105% of Rx dose <10 cc non-adjacent wall to 47 Gy	None
Observed Toxicity	15 grade 3+ AE (15%) 4 grade 5 AE (4%) – All hemoptysis	22 grade 3+ AE (33.8%) 10 grade 5 AE (15.4%), 6 hemoptysis

SBRT for Large Tumors

- Multi-institution analysis of 92 patients with NSCLC 5-7.5 cm
- 2-year disease-specific survival of 78.6%
- 2-year OS 46.4%
- Most recurrences were distant

min

• 1 grade 5 pneumonitis (7.5 cm tumor); otherwise limited toxicity

Verma V et al. Multi-institutional experience of stereotactic body radiotherapy for large (≥5 centimeters) non-small cell lung tumors. Cancer 2017.

Role of Pulmonary Function

- No clear lower threshold for safe SBRT
- Pre-treatment DLCO associated with OS

Guckenberger M et al. Is There a Lower Limit of Pretreatment Pulmonary Function for Safe and Effective Stereotactic Body Radiotherapy for Early-Stage Non-small Cell Lung Cancer? JTO 2012

SBRT with Interstitial Lung Disease

Study	Ν	Radiation Pneumonitis Rates
Bahig et al (Montreal). PRO 2016	28	32% grade 3+ 21% grade 5
Ueki et al (Kyoto), JTO 2015	20	55% grade 2+ 10% grade 3+
Glick et al (Princess Margaret), CLC 2018	39	20.5 grade 2+ 10.3% grade 3+ 5.1% grade 5
Yamaguchi et al (Kitakyushu), Lung Cancer 2013	16 (subclinical)	19% grade 2+ 12.5% grade 4+
Onishi et al (Japanese multi-institution), Cancers 2018	242	6.9% grade 5
Finazzi T et al (Amsterdam), WCLC 2019	24	20.8% grade 3+ 12.5% grade 5

Summary

- SBRT is an excellent and low toxicity treatment option for medically inoperable, early stage NSCLC
- Patient selection factors include tumor size, location, comorbidities, and pulmonary function
- Even quite frail patients with relatively poor pulmonary function may be candidates for SBRT

Locally Advanced NSCLC: Standard Treatment and Clinical Trials

Greg Kalemkerian, MD Medical Oncology University of Michigan

NSCLC: Stage III, Multimodality treatment options

- Sequential Chemotherapy \rightarrow Radiotherapy
 - Better than RT alone
- Concurrent Chemotherapy + Radiotherapy
 - Better than sequential chemo/RT
- Chemotherapy +/- Radiotherapy \rightarrow Surgery
 - Better than surgery alone; Equal to chemo/RT alone ?
- Chemotherapy + Radiotherapy → Chemotherapy
- Chemotherapy + Radiotherapy \rightarrow Immunotherapy
 - Better than chemo/RT alone
- Immunotherapy +/- Chemotherapy → Surgery (investigational)

<u>Stage IIIA/B/C (T1-4 N2-3), PS 0-2, < 10% wt. loss</u>

- <u>Concurrent Chemo + Definitive RT \rightarrow Durvalumab</u>
 - Chemotherapy:
 - Carboplatin + Paclitaxel weekly \times 6 weeks or
 - Cisplatin/Carboplatin + Etoposide \times 2 cycles or
 - Cisplatin/Carboplatin + Pemetrexed × 3-4 cycles (non-squamous)
 - Definitive RT:
 - 60-70 Gy in 2-2.3 Gy fractions
 - Immunotherapy (consolidation):
 - Durvalumab 10 mg/kg q 2 weeks or 1500 mg q 4 weeks × 1 year

PACIFIC: CT/RT + Consolidation Durvalumab

• <u>Primary end-points</u>: PFS and overall survival

mini

Antonia SJ, et al. NEJM 377:1919, 2017

PACIFIC: CT/RT + Consolidation Durvalumab

	CT/RT + DURV	CT/RT	HR	
N	473	236		
Median OS	47.5 mo.	29.1 mo.	- 0.72 (0.59-0.89)	
5-year OS	42.9%	33.4%		

Overall Survival

Antonia, et al. NEJM 379:2342, 2018 Faivre-Finn, et al. J Thorac Oncol 16, 860, 2021 Spigel, et al. J Clin Oncol 39(15S); abstr 8511, 2021

PACIFIC-2: Ph III CT/RT + Durvalumab or Placebo

- Eligibility: N=300 pts; unresectable stage III NSCLC, PS 0-1
- Randomization (2:1):
 - Durvalumab 1500 mg q4w + concurrent CT/RT \rightarrow durvalumab
 - Placebo q4w + concurrent CT/RT \rightarrow durvalumab
- Primary endpoints: PFS and ORR
- Secondary endpoints: OS, CR rate, DOR, DCR, time to death/distant metastases, time to second progression, safety, quality of life
- Enrollment: On-going, began 3/2018

Antonia SJ, et al. NEJM 377:1919, 2017

Stage IIIA, non-bulky N2/T3-4 N1/T4 N0, PS 0-1

- Option 1: concurrent chemo/RT \rightarrow durvalumab
- Option 2 (if no pneumonectomy): neo-adjuvant chemo ± RT (45 Gy) → resection ± durvalumab consolidation
- Option 3: neo-adjuvant immunotherapy ± chemo → resection ± immunotherapy consolidation (investigational)

Stage IIIA Intergroup 0139: Neoadjuvant CT/RT

- Biopsy-proven stage IIIA (T1-3 N2) NSCLC
- Arm 1 PE + RT (45 Gy) \rightarrow surgery \rightarrow PE Arm 2 - PE + RT (61 Gy) \rightarrow PE

	N	P	FS	OS		
		Median	5-year	Median	5-year	
CT/RT→Surgery	202	13 mo. 22%		23.6 mo.	27%	
CT/RT	194	11 mo.	11%	22.2 mo.	20%	
HR		0.77 (0.62-0.96)		0.87 (0.70-1.10)		
P-value		0.0)17	0.	24	

Albain, et al. Lancet 374:379, 2009

Stage IIIA Intergroup 0139: Neoadjuvant CT/RT

Entire Population

OS by Surgery Type

Albain et al. Lancet 374:379, 2009

CM816: Phase III Neo-adjuvant Chemo + Nivo

- Eligibility: stage IB (≥4 cm)-IIIA NSCLC, PS 0-1, no EGFR/ALK
- Randomized: Nivo 360 mg + Chemo q3w × 3 cycles vs.
 Chemo q3w × 3 cycles

		Went to	RO	Clinical	Path Response		Toxicity		
	N	Surgery	Resection	ORR	pCR	mPR	Gr 3-4 TRAE	Gr 3-4 Surgical	Delay in Surgery
Nivo + Chemo	179	83%	83%	54%	24%	37%	34%	11%	21%
Chemo	179	75%	78%	37%	2.2%	9%	37%	15%	18%
OR					13.9				
p-value					<0.0001				

Spicer, et al. J Clin Oncol 39(15S); abstr 8503, 2021; Forde, et al. AACR 2021, abstr CT003

Questions and Answers

