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Genomics Reloaded: Rise of the Expression Profiles
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In this issue of Oncology Scan, similar to previous head and
neck cancer Oncology Scans (1-7), we examine the use of
genomic signatures to predict response to head and neck
cancer therapy (8-10). In the past decade and a half,
multiple teams have identified and developed gene
expression profile signatures capable of subclassifying head
and neck cancer, prognosticating outcome, and predicting
treatment response. We discuss the implications of these
genomic signatures for head and neck cancer patients, how
these signatures can be applied to other therapies, their use
to assist in preclinical studies, and suggestions on how this
work can move the field forward, not just for head and neck
cancer but potentially for all types of cancers.
Klinghammer et al. Basal subtype is predictive for
response to cetuximab treatment in patient-derived
xenografts of squamous cell head and neck cancer. Int
J Cancer 2017. (9)

Summary: This translational genomics article hypothesized
that basal subtype tumors (which are known to have
epidermal growth factor receptor [EGFR] pathway
activation) would be preferentially sensitive to anti-EGFR
therapy. To test response to common chemotherapies
(eg, carboplatin, cisplatin, or cetuximab), the authors
used patient-derived xenografts (PDXs). Patient-derived
xenografts are a powerful preclinical model system in
which fragments of a patient tumor are engrafted onto an
immunocompromised mouse to test novel therapeutics or
investigate tumor biology (11, 12). Tumors were harvested
3 weeks after initial treatment and analyzed using next-
generation sequencing to assess for mutational differences
between tumors and using gene expression microarrays.
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They performed a number of analyses (13-15) to classify
the PDXs into 1 of 3 subtypes (ie, basal, classic, and
mesenchymal/inflamed). The only correlation between
treatment and subtype was seen for cetuximab treatment.
Tumors of the basal subtype, enriched for the EGFR
pathway, responded favorably to cetuximab. Tumors of the
mesenchymal/inflamed subtype demonstrated negative
enrichment for the EGFR pathway and did not respond to
cetuximab. Mutational analysis demonstrated no significant
differences between subtypes, but among the most
frequently altered genes overall were TP53 and PI3KCA,
consistent with previously published work (16, 17).
Although the authors noted enrichment in mutated PI3KCA
within the mesenchymal/inflamed subtype, no association
between systemic therapy and mutational status was
observed, consistent with other studies (18).
Bossi et al. Functional genomics uncover the biology
behind the responsiveness of head and neck squamous
cell cancer patients to cetuximab. Clin Cancer
Res 2016. (8)

Summary: In this retrospective genomic analysis study,
patients treated with chemotherapy and cetuximab between
2008 and 2012 were identified. A total of 40 patients with
recurrent or metastatic head and neck squamous cell
carcinoma were included in the analysis. Patients were
stratified into 2 groups: long progression-free survival
(PFS) (nZ14) or short PFS (nZ26). Whole-genome gene
expression profiling was performed on formalin-fixed,
paraffin-embedded tumor specimens. Importantly, the
authors rigorously assessed their dataset using modeling-
prediction software, existing validation datasets, and
technical validation for gene expression. A gene signature
based on more than 500 differentially expressed genes was
independently validated against a metastatic colorectal
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cancer dataset from patients treated with cetuximab. The
identified signature was able to demonstrate a significant
difference between short and long PFS in the colorectal
cancer dataset, suggesting a robust signature with relevance
across tumor types. Further stratification of the dataset into
molecular subtypes (see above) demonstrated that the
long-PFS group most closely resembled the basal subtype,
consistent with the work of Klinghammer et al. Bossi et al
also demonstrated upregulation of the RAS pathway,
particularly oncogenic KRAS mutants, within the short-PFS
signature, consistent with studies in other types of cancers
in which RAS activation correlates with cetuximab
resistance (19, 20). They validated these findings in head
and neck squamous cell carcinoma cell lines that were
either sensitive or resistant to cetuximab treatment.
Scott et al. A genome-based model for adjusting
radiotherapy dose (GARD): A retrospective,
cohort-based study. Lancet Oncol 2016. (10)

This large-scale retrospective study introduced the
concept of genome-based adjustment of radiation therapy
dose (GARD) using patient gene expression profiles to help
predict an optimal radiation dose; GARD was derived using
a previously established gene expressionebased radiation
sensitivity index and the linear-quadratic model. Using
primary tumor samples prospectively collected through the
Total Cancer Care protocol, this study drew from more than
8000 tissue samples representing 20 different tumor types
that underwent gene expression analysis. According to their
stratified gene expression profile, tissue groups were
assigned a GARD score based on their sensitivity to 3
different radiation dose ranges: 45, 60, or 70 Gy and higher.
Patients with high GARD scores exhibited improved distant
metastasisefree survival rates, and GARD remained an
independent prognostic (and predictive) factor after
controlling for known variables. The authors tested GARD
against 5 different publically available expression profiles,
and for each dataset GARD remained highly predictive of
local control and relapse-free and overall survival (10). In
particular, samples drawn from the Total Cancer Care
protocol demonstrated that cervical and oropharyngeal
squamous cell carcinoma patients had a high GARD score,
whereas non-oropharyngeal head and neck cancer was
associated with a lower GARD score.

Comments: Therapies targeting EGFR represented the first
“breakthrough” molecularly targeted drugs for head and
neck cancer. In randomized studies, the addition of
cetuximab to radiation (21) or systemic chemotherapy (22)
improved outcomes. There remains significant uncertainty
as to how to use these drugs to deliver personalized
treatment to head and neck cancer patientsdthe right
therapy to the right patient at the right time. Simple
approaches, such as stratifying patients by high versus low
EGFR status, have failed to demonstrate any correlation
with outcome and cetuximab use (23).
The first 2 articles presented here demonstrate the
potential power of genomic data to predict responses to
anticancer drugs. Klinghammer et al demonstrated
through molecular subtyping of their head and
neck cancer PDXs that they can predict response to
cetuximab therapy and that a favorable response was
strongly correlated with basal subtype. Bossi et al
developed a gene expression profile that could stratify
cetuximab-treated patients into long and short PFS (19 vs
3 months, respectively). Together, these studies suggest
that we may be able to identify a group of patients most
likely to benefit from the use of cetuximab and illustrate
how the use of preclinical model systems can enable us
to identify predictors of therapy response. Given the
significant cost of prospective therapeutic trials and
the critical metric of improving patient overall survival,
the need to design rational, data-driven clinical studies is
paramount. We hope that the use of preclinical
models such as these could be used to inform patient
selection criteria for future clinical trials. Had this
approach been used for trials such as Radiation Therapy
Oncology Group protocol 0522, perhaps the results of
the study would have been different, because
investigators could have identified the group of patients
most likely to benefit from a novel therapy. To be sure,
genomic analyses must be tested in prospective trials to
demonstrate their true value in cancer care. These
studies also demonstrate ways in which powerful
preclinical model systems can be used to move the field
forward.

In the third article, the group of Javier Torres-Roca
sought to use their radiation sensitivity index to
personalize radiation dose using GARD (10, 24). This
article strongly suggests that precision medicine,
traditionally associated with medical oncology and
systemic therapy, may yet find an important role in
radiation oncology. Although radiation oncologists have
long personalized radiation fields to individual patients, we
have largely left the radiation dose used to treat a given
tumor fixed. The use of GARD provides one example of
how we could identify a group of patients who will respond
to radiation treatment, and it may also enable us to identify
the optimal dose for each individual patient’s cancer.
Clearly the radiation sensitivity index and GARD will
require further evaluation in prospective trials to validate
our ability to continue to cure cancer patients while
personalizing the radiation dose they receive.

It is easy to envision a day when gene expression
profiles will be used to personalize therapy for our
patients. These gene expression profiles are not the end but
rather a new beginning and will serve as a jump point for
clinicians and scientists to make additional discoveries
that will continue to advance the field of medicine.
Radiation has been used to cure cancer patients for more
than a century. By embracing the personalization of cancer
care, we will continue to provide valuable, effective care
for the next 100 years.
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