# ASTRO Refresher Course 2021: Modern radiation therapy for lymphoma

Yolanda D Tseng, MD MPhil Department of Radiation Oncology University of Washington Fred Hutch Cancer Research Center



### Disclosure

- Employer: University of Washington
- I have no conflicts of interest to disclose

## Learning Objectives

- Describe indications for RT in the management of patients with lymphoma
  - Classical Hodgkin lymphoma (HL)
  - Non-Hodgkin lymphoma (NHL): diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), marginal zone lymphoma (MZL)
- Recognize how systemic therapy and diagnostic imaging influence RT recommendations and dose
- Identify strategies to minimize radiation toxicity, including involved site/node RT, and scenarios that may benefit from advanced RT techniques

## Workup for lymphoma (highlights)



H&P

- Systemic symptoms (fatigue, pruritis)
  - B-symptoms
    - Unexplained fever >100.5 for >=1 mo
    - Unexplained weight loss >10% body weight in 6 mo
    - Drenching night sweats
  - LN exam
- Labs ESR, LDH
  - Pregnancy test (females of childbearing age)
- Path Excisional or core biopsy > fine needle

🈏 #Refresher21 4

### **Staging and response assessment** Lugano classification (highlights)

### Staging

- PET/CT for routine staging of FDG-avid lymphomas, CT otherwise
- BM biopsy not required for HL and most DLBCL
- Bulky: No X, report longest measurement by CT

#### **Response assessment**

- PET/CT is SOC for remission assessment
- Standard reporting through Deauville 5point scale
- Complete metabolic response even with persistent mass is considered CR

### Surveillance

 Routine scanning discouraged for HL and DLBCL

Cheson JCO 2014; Barrington JCO 2014

### **PET/CT Response assessment** Deauville score (Lugano)

5-PS scores most intense uptake in a site of initial disease

| ET -      | 1  | No uptake above background                            |
|-----------|----|-------------------------------------------------------|
| -3: P     | 2  | Uptake <= mediastinum                                 |
| D1        | 3* | Uptake >mediastinum but <= liver                      |
| -5: PET + | 4  | Uptake moderately higher than liver                   |
|           | 5  | Uptake markedly higher than liver and/or new lesions  |
| D4-       | Х  | New areas of uptake unlikely to be related to lymphor |

\*for de-escalation studies, Deauville 3-5 considered positive



#### Barrington JCO 2014

### **PET/CT Response assessment** Potential pitfalls

Beware of other FDG uptake on PET

- Brown fat
  - Neck, SCV
  - Mediastinum (periaortic)
  - Paravertebral
  - Suprarenal
- Sarcoidosis



S/p ABVD x 4: Deauville 4

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🎔 #Refresher21 🏼 7

### Staging: Modified Ann Arbor staging for HL and NHL

| Stage     | Involvement                                                                                      | Extranodal (E) Status                                                                 |
|-----------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Limited   |                                                                                                  |                                                                                       |
| I         | One node or a group of adjacent nodes                                                            | Single extranodal lesions<br>without nodal<br>involvement                             |
| II        | Two or more nodal groups on the same side of the diaphragm                                       | Stage I or II by nodal<br>extent with limited<br>contiguous extranodal<br>involvement |
| ll bulky* | II as above with "bulky" disease                                                                 | Not applicable                                                                        |
| Advanced  |                                                                                                  |                                                                                       |
| III       | Nodes on both sides of the<br>diaphragm; nodes above the<br>diaphragm with spleen<br>involvement | Not applicable                                                                        |
| IV        | Additional noncontiguous<br>extralymphatic involvement                                           | Not applicable                                                                        |

NOTE. Extent of disease is determined by positron emission tomographycomputed tomography for avid lymphomas and computed tomography for nonavid histologies. Tonsils, Waldeyer's ring, and spleen are considered nodal tissue.

"vvnetner stage II bulky disease is treated as limited or advanced disease may be determined by histology and a number of prognostic factors.

- A/B designation only for HL
- Extra-lymphatic involvement: CSF, BM, liver, lungs (not direct extension)

Cheson JCO 2014

#### 2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🕑 #Refresher21 🛛 8

## Role of RT for Hodgkin lymphoma

### Early stage (Stage I/II)

- Favorable
- Unfavorable

Advanced stage (Stage III/IV,

[bulky stage II])

- Incomplete response to chemotherapy
- (Bulky disease)

### **Relapsed/refractory**

- Peri-transplant
- Salvage
- Palliation

Contemporary trials evaluate the role of RT in the era of PET

### Case

- 30F with progressive right neck fullness without B-symptoms
- Biopsy demonstrates nodular sclerosing Hodgkin lymphoma
- ESR is 8



## Pathology

|                            | Classic Hodgkin lymphoma                                                                                                | Nodular lymphocyte predominant<br>Hodgkin lymphoma (NLPHL) |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Immunophenotype            | CD15/30+, CD20/45-                                                                                                      | CD15/30-, CD20/45+                                         |
| Neoplastic cell            | Reed-Sternberg cells (minority)                                                                                         | "Lymphocytic and histiocytic" cells                        |
| Inflammatory<br>background | Composition varies across subtypes                                                                                      | Lymphocytes, histiocytes                                   |
|                            | <ul> <li>Nodular sclerosing</li> <li>Mixed cellularity</li> <li>Lymphocyte-rich</li> <li>Lymphocyte-depleted</li> </ul> |                                                            |

Different treatment paradigms for these two pathologic entities

### Case

- 30F with progressive right neck fullness without B-symptoms
- Biopsy demonstrates nodular sclerosing Hodgkin lymphoma
- ESR is 8



### Definition of unfavorable varies across groups

#### Unfavorable Risk Factors for Stage I–II Classic Hodgkin Lymphoma

| Risk Factor        | GHSG               | EORTC              | NCCN                  |
|--------------------|--------------------|--------------------|-----------------------|
| Age                |                    | ≥50                |                       |
| Histology          |                    |                    |                       |
| ESR and B symptoms | >50 if A; >30 if B | >50 if A; >30 if B | ≥50 or any B symptoms |
| Mediastinal mass   | MMR > 0.33         | MTR > 0.35         | MMR > 0.33            |
| # Nodal sites      | >2*                | >3*                | >3                    |
| E lesion           | any                |                    |                       |
| Bulky              |                    |                    | >10 cm                |

GHSG = German Hodgkin Study Group EORTC = European Organization for the Research and Treatment of Cancer MMR = Mediastinal mass ratio, maximum width of mass/maximum intrathoracic diameter MTR = Mediastinal thoracic ratio, maximum width of mediastinal mass/intrathoracic diameter at T5-6

From NCCN v2.2021

## Evolution of early stage HL strategies

#### **Risk-adapted**

• Prognostic features guide Rx

#### GHSG HD11

 RT dose for unfavorable HL (ABVDx4 + 30 Gy)

| 2010                                                                                         | 2015 | 2020 |
|----------------------------------------------------------------------------------------------|------|------|
| GHSG HD10                                                                                    |      |      |
| <ul> <li>De-escalation of<br/>treatment for<br/>favorable HL<br/>(ABVDx2 + 20 Gy)</li> </ul> |      |      |



## Evolution of early stage HL strategies

| <ul> <li><i>Risk-adapted</i></li> <li>Prognostic features g</li> <li><i>GHSG HD11</i></li> <li>RT dose for<br/>unfavorable HL<br/>(ABVDx4 + 30 Gy)</li> </ul> | guide Rx | <ul> <li>EORTC H10</li> <li>Favorable HL<br/>(ABVDx3+RT vs<br/>ABVDx4)</li> <li>Unfavorable HL<br/>(ABVDx4+RT vs<br/>ABVDx6)</li> <li>PET2</li> </ul> |                                                                            | <ul> <li><b>RATHL</b></li> <li>Stage II/<br/>IIB-IV H</li> <li>PET2</li> <li>ABVDx2</li> </ul> | A bulky,<br>L<br>2 → AVDx4 | <b>GHS</b><br>• Ur<br>• PE<br>• BE<br>AE | r <b>G HD17</b><br>nfavorable HL<br>ET4<br>EACOPPesc x2 +<br>BVD x2                      |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|------------------------------------------------------------------------------------------|----|
| 2010                                                                                                                                                          |          |                                                                                                                                                       | 2015                                                                       | l                                                                                              |                            |                                          | 2020                                                                                     |    |
| <ul> <li>GHSG HD10</li> <li>De-escalation of treatment for favorable HL (ABVDx2 + 20 Gy)</li> </ul>                                                           |          |                                                                                                                                                       | <ul><li><b>RAPID</b></li><li>Stage I,</li><li>PET3</li><li>ABVDx</li></ul> | /IIA HL<br>3 +/- RT                                                                            |                            |                                          | <ul> <li>GHSG HD16</li> <li>Favorable HL</li> <li>PET2</li> <li>ABVDx2 + 20 G</li> </ul> | ŝγ |
|                                                                                                                                                               |          |                                                                                                                                                       | Response<br>• PET-gu                                                       | <i>-adapted</i><br>ides therap                                                                 | У                          |                                          |                                                                                          |    |

### Treatment de-escalation for early stage favorable HL

### GHSG HD10

Stage I/II without clinical risk factors



ABVD: Adriamycin, bleomycin, vinblastine, dacarbazine

Established ABVDx2 + 20 Gy as standard



### Case

# Undergoes PET/CT after ABVDx2:



**2021 ASTRO ANNUAL REFRESHER COURSE •** MARCH 19-21, 2021

**)** #Refresher21 17

### **Response-adapted treatment** Can therapy be further de-escalated for favorable HL?

### GHSG HD16

### PET-2 neg (D1-2) patients



RT cannot be safely omitted after a complete metabolic response to ABVDx2

Fuchs JCO 2019

### Case

Undergoes PET/CT after ABVDx2:

# Recommended consolidation involved site RT (20 Gy)

#### Pre-chemotherapy PET

PET after ABVDx2

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🔰 #Refresher21 19

### **Evolution of radiation fields**



2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🕑 #Refresher21 20

### Involved-node/site radiotherapy technique



- Pre-chemotherapy GTV determines CTV
- INRT is a special case of ISRT in which optimal imaging is available
- ISRT CTV may be larger to accommodate uncertainties in defining pre-chemo GTV
- Modern RT techniques (3Dplanning versus 2D bony anatomy)

Girinsky Radiother Oncol 2006; Specht IJROBP 2013

### Outcomes with smaller fields

No randomized data on IFRT versus ISRT/INRT

- Prospective data (EORTC H10)
- Retrospective data
  - BCCA: LRR (2%) in 5 (EBRT 3, IFRT 2)
  - University of Copenhagen (INRT): 'innode' relapse in 2 (1.2%)
  - No marginal relapses



#### Smaller fields are not associated with increased rates of relapse

Campbell JCO 2008; Nielsen Radiother Oncol 2020

### Size does matter

Reduction in breast cancer risk with smaller fields



Conway IJROBP 2017; De Bruin JCO 2009

### Case

Simulated with arms down → less breast tissue brought in medially (Denniston Front Oncol 2016)

"Toolkit" of RT techniques

- DIBH
- 4D CT
- 3D conformal
- IMRT/VMAT
- Proton therapy
- IGRT



🔰 #Refresher21 24

### **Treatment techniques for mediastinal lymphoma**





|               | Free breathing | Deep inspiration breath hold (DIBH) |
|---------------|----------------|-------------------------------------|
| Heart (mean)  | 7.2 Gy         | 2.8 Gy                              |
| Breast (mean) | 0.2 Gy         | 0.2 Gy                              |
| Lungs (mean)  | 4.5 Gy         | 3.9 Gy                              |
| Lungs V20     | 4%             | 3%                                  |
| Lungs V5      | 25%            | 22%                                 |

## Deep inspiration breath hold (DIBH)

#### Dosimetric comparison of DIBH versus free breathing (FB): Institut Gustave Roussy

| Patient group                  | Free-breathing IMRT                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deep-inspiration<br>breath-hold IMRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>p</i> value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All patients $(n = 28)$        | 18.2 (15.9–20.6)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.2 (12.6–17.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Upper mediastinum ( $n = 11$ ) | 13.9 (10.1–17.6)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.8 (5.6–12.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Whole mediastinum $(n = 17)$   | 21.1 (18.7–23.4)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.3 (17.2–21.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| All patients $(n = 28)$        | 8.4 (6.1–10.7)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.1 (4.7–9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Upper mediastinum $(n = 11)$   | 3.6 (2.5–4.7)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8 (1.4–2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0/001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Whole mediastinum $(n = 17)$   | 11.5 (8.6–14.4)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.6 (7.6–13.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| All patients $(n = 28)$        | 11.8 (10.6–12.9)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.4 (8.3–10.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Upper mediastinum $(n = 11)$   | 9.2 (8.4–10.1)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.8 (6.3–7.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Whole mediastinum $(n = 17)$   | 13.4 (12–14.8)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 (9.9–12.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| All patients $(n = 28)$        | 21 (18–24)                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 (12–16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Upper mediastinum $(n = 11)$   | 16 (13–19)                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 (8–12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Whole mediastinum $(n = 17)$   | 24 (21–28)                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 (15–20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | Patient group<br>All patients $(n = 28)$<br>Upper mediastinum $(n = 11)$<br>Whole mediastinum $(n = 17)$<br>All patients $(n = 28)$<br>Upper mediastinum $(n = 11)$<br>Whole mediastinum $(n = 17)$<br>All patients $(n = 28)$<br>Upper mediastinum $(n = 11)$<br>Whole mediastinum $(n = 17)$<br>All patients $(n = 28)$<br>Upper mediastinum $(n = 17)$<br>All patients $(n = 28)$<br>Upper mediastinum $(n = 11)$<br>Whole mediastinum $(n = 11)$ | Patient groupFree-breathing IMRTAll patients $(n = 28)$ $18.2 (15.9-20.6)$ Upper mediastinum $(n = 11)$ $13.9 (10.1-17.6)$ Whole mediastinum $(n = 17)$ $21.1 (18.7-23.4)$ All patients $(n = 28)$ $8.4 (6.1-10.7)$ Upper mediastinum $(n = 11)$ $3.6 (2.5-4.7)$ Whole mediastinum $(n = 17)$ $11.5 (8.6-14.4)$ All patients $(n = 28)$ $11.8 (10.6-12.9)$ Upper mediastinum $(n = 11)$ $9.2 (8.4-10.1)$ Whole mediastinum $(n = 17)$ $13.4 (12-14.8)$ All patients $(n = 28)$ $21 (18-24)$ Upper mediastinum $(n = 11)$ $16 (13-19)$ Whole mediastinum $(n = 17)$ $24 (21-28)$ | Patient groupFree-breathing IMRTDeep-inspiration<br>breath-hold IMRTAll patients $(n = 28)$ $18.2 (15.9-20.6)$ $15.2 (12.6-17.9)$ Upper mediastinum $(n = 11)$ $13.9 (10.1-17.6)$ $8.8 (5.6-12.1)$ Whole mediastinum $(n = 17)$ $21.1 (18.7-23.4)$ $19.3 (17.2-21.6)$ All patients $(n = 28)$ $8.4 (6.1-10.7)$ $7.1 (4.7-9.6)$ Upper mediastinum $(n = 11)$ $3.6 (2.5-4.7)$ $1.8 (1.4-2.2)$ Whole mediastinum $(n = 17)$ $11.5 (8.6-14.4)$ $10.6 (7.6-13.6)$ All patients $(n = 28)$ $11.8 (10.6-12.9)$ $9.4 (8.3-10.4)$ Upper mediastinum $(n = 11)$ $9.2 (8.4-10.1)$ $6.8 (6.3-7.3)$ Whole mediastinum $(n = 17)$ $13.4 (12-14.8)$ $11 (9.9-12.1)$ All patients $(n = 28)$ $21 (18-24)$ $15 (12-16)$ Upper mediastinum $(n = 11)$ $16 (13-19)$ $10 (8-12)$ Whole mediastinum $(n = 17)$ $24 (21-28)$ $17 (15-20)$ | Patient groupFree-breathing IMRTDeep-inspiration<br>breath-hold IMRTDifferenceAll patients $(n = 28)$ $18.2 (15.9-20.6)$ $15.2 (12.6-17.9)$ $16\%$ Upper mediastinum $(n = 11)$ $13.9 (10.1-17.6)$ $8.8 (5.6-12.1)$ $37\%$ Whole mediastinum $(n = 17)$ $21.1 (18.7-23.4)$ $19.3 (17.2-21.6)$ $9\%$ All patients $(n = 28)$ $8.4 (6.1-10.7)$ $7.1 (4.7-9.6)$ $15\%$ Upper mediastinum $(n = 11)$ $3.6 (2.5-4.7)$ $1.8 (1.4-2.2)$ $50\%$ Whole mediastinum $(n = 17)$ $11.5 (8.6-14.4)$ $10.6 (7.6-13.6)$ $8\%$ All patients $(n = 28)$ $11.8 (10.6-12.9)$ $9.4 (8.3-10.4)$ $20\%$ Upper mediastinum $(n = 11)$ $9.2 (8.4-10.1)$ $6.8 (6.3-7.3)$ $26\%$ Whole mediastinum $(n = 17)$ $13.4 (12-14.8)$ $11 (9.9-12.1)$ $18\%$ All patients $(n = 28)$ $21 (18-24)$ $15 (12-16)$ $28\%$ Upper mediastinum $(n = 11)$ $16 (13-19)$ $10 (8-12)$ $38\%$ Whole mediastinum $(n = 17)$ $24 (21-28)$ $17 (15-20)$ $29\%$ |

Greatest benefit of DIBH for tumors with only upper mediastinal involvement

Paumier IJROBP 2012

### Approaches for lower mediastinal lymphoma

Various landmarks used to define lower mediastinal involvement:







Upper mediastinum Lower mediastinum

### Approaches for lower mediastinal lymphoma

- "Butterfly" IMRT/VMAT
- 5-7 total beams
- 2-3 non-coplanar arcs
- Anterior 300°-30°
- Posterior 160°-210°





Voong Radiat Oncol 2014; Starke Radiother Oncol 2018



### Approaches for lower mediastinal lymphoma

- "Butterfly" IMRT/VMAT
- 5-7 total beams
- 2-3 non-coplanar arcs
- Anterior 300°-30°
- Posterior 160°-210°





Proton therapy

- Anterior or anterior oblique +/- posterior beams
- Volumetric repainting if using a single beam



Voong Radiat Oncol 2014; Starke Radiother Oncol 2018

4 6



### Suggested acceptable doses to OARs Mediastinal target

| Structures                                                           | ldeal                 | Optimize<br>technique   | Optimize field (consider<br>field reduction) | Unacceptable   | Avoid maximum<br>dose landing in |
|----------------------------------------------------------------------|-----------------------|-------------------------|----------------------------------------------|----------------|----------------------------------|
| Heart: left ventricle,<br>coronary arteries, valves <sup>39-41</sup> | Mean < 5 Gy           | Mean, 5-15 Gy           | Mean > 15 Gy                                 | Mean > 30 Gy   | Coronary vessels                 |
| Breast (age dependent)*                                              | Mean < 4 Gy           | Mean, 4-15 Gy           | Mean $> 15 \text{ Gy}$                       | Mean > 30 Gy   | Glandular tissue                 |
| Lung <sup>38</sup>                                                   | $V_{5} < 55\%$        | V <sub>5</sub> , 55-60% | —                                            | $V_5 > 60\%$   |                                  |
|                                                                      | V <sub>20</sub> < 30% | Mean, 10-13.5 Gy        |                                              | Mean > 13.5 Gy |                                  |
|                                                                      | Mean < 10 Gy          |                         |                                              |                |                                  |
| Thyroid <sup>62</sup>                                                | $V_{25} < 62.5\%$     | V <sub>25</sub> < 62.5% |                                              |                | Whole thyroid                    |

May help guide consideration of advanced RT technique (IMRT/VMAT, proton therapy), or omission of RT if unable to achieve a safe plan

Dabaja Blood 2018

### Case

33F with lump in throat and left neck swelling

- Nodular sclerosing HL of both SCV, mediastinum, L hilar, R IMN
- No B-symptoms
- ESR 11



### **Early stage unfavorable HL** Can dose be de-escalated?

### GHSG HD11 (pre-PET era)

- 2 randomizations:
  - ABVD vs BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone)
  - 20 versus 30 Gy IFRT
- Worse FFTF with ABVD+20 Gy
- Established ABVDx4+30 Gy as standard
- RT de-escalation depends on chemo backbone



### **Response-adapted therapy for early stage HL** Omission of RT in setting of negative PET

**UK RAPID** 



#### IFRT 30 Gy



Raemaekers JCO 2014; Andrew JCO 2017; Radford NEJM 2015



### **Response-adapted therapy for early stage HL** Omission of RT in setting of negative PET



### **Response-adapted therapy for early stage HL** Omission of RT in setting of negative PET

#### EORTC H10 **UK RAPID** N=444/693 favorable/unfavorable N=602 (426 PET negative), 64% fav by EORTC Clinical stage IA, IIA Stage I/II Excluded mediastinal bulk Cohort • 40% unfavorable patients with bulk • 2003-2010 2006-2010 Non-inferiority Non-inferiority Design • <=7% difference in 3-yr PFS <=10% difference in 5-yr PFS</li> Interim analysis declared futility • PFS<sub>3</sub> 94.6% vs 90.8% Results F PFS<sub>5</sub>: 99% vs 87%, HR 15.8 (95% CI 3.8-66.1) △: -3.8% (95% CI -8.8-1.3%) U PFS<sub>5</sub>: 92% vs 90%, HR 1.45 (0.8-2.5)

RT cannot be safely omitted after ABVD chemotherapy, even with negative PET/CT

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🎔 #Refresher21 35

### Safe omission of RT depends on chemo backbone



- Non-inferiority margin PFS<sub>5</sub> <= 8<sup>7</sup>/<sub>0</sub>
   BT can be safely omitted after negative PFI
- RT can be safely omitted after negative PET with more intensive chemotherapy backbone (2+2)

Borchmann Lancet 2021
# **Response-adapted therapy for (early stage) HL** De-escalation of chemotherapy

### RATHL

- IIB-IV HL, or IIA with bulky disease or >=3 nodal sites
- <u>Stage II (42%)</u>, bulky (32%)
- No RT recommended for patients with negative PET2 (D1-3)
  - RT given 2.6% ABVD, 4.3% AVD
- Technically, did not meet noninferiority margin (<=5% difference in PFS<sub>3</sub>)

Johnson NEJM 2016





A Progression-free Survival among Patients with Negative PET Findings



# My clinical practice for early stage HL



2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🍯 #Refresher21 38

# Case

#### 33F with stage IIA unfavorable HL

- Treated with ABVDx4
- Complicated by bleomycin toxicity
- PET/CT Deauville 2

# Consolidated with ISRT (30 Gy) with PBS proton therapy

| Organ        | Photon (DIBH) | Proton (Free breathing) |
|--------------|---------------|-------------------------|
| Total lung   | V20 27%       | V20 20%                 |
|              | V5 41%        | V5 37%                  |
|              | Mean 10.5 Gy  | Mean 5.9 Gy             |
| Heart        | Mean 15.1 Gy  | Mean 9 Gy               |
| Breast_Left  | Mean 5.78 Gy  | Mean 2.4 Gy             |
| Breast_Right | Mean 4.23 Gy  | Mean 2.5 Gy             |
| Cord         | Max 33 Gy     | Max 28 Gy               |
| Esophagus    | Mean 20 Gy    | Mean 19.4 Gy            |



# Role of RT for bulk

### **Italian RCT**

- N=260 with >=5 cm disease
  - 66% stage I/II
  - 34% stage III/IV
- VEBEP x6 (Vinblastine, etoposide, bleomycin, epirubicin, prednisone)
- Randomized after negative PET to IFRT (32 Gy) versus observation
- RT improves PFS ~10%
- All relapses in obs arm within bulky site and contiguous nodal areas



Picardi Leuk Lymph 2007

# Advanced stage Hodgkin lymphoma Role of RT for initial bulk (>=5 cm) after ABVDx6

Stage IIB-IV HL with negative PET2 and PET6, randomized to 30 Gy versus observation

|                                                             | Patients                                                                                               | Outcome                                                                                                              |                                                   |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <b>GITIL HD</b><br><b>0607</b><br><i>Gallamini JCO 2020</i> | N=296<br>• 33% >10 cm<br>• 47% stage II<br>• 53% stage III/IV                                          | <ul> <li>PFS<sub>6</sub>: 92% (RT) vs 90% (NS)</li> <li>PFS<sub>6</sub> (&gt;10 cm): 89% vs 86% (NS)</li> </ul>      | Trial not powered by a defined statistical design |
| <b>FIL HD 0801</b><br>Ricardi ESTRO 2019                    | <ul> <li>N=116</li> <li>Median, 8 cm</li> <li>29% stage II</li> <li><b>71% stage III/IV</b></li> </ul> | <ul> <li>ITT: PFS<sub>5</sub> 83.7% (RT) vs 85.8%</li> <li>PP: PFS<sub>5</sub> 88.9% (RT) vs 81.5%; p=.24</li> </ul> | Trial underpowered                                |

Data may suggest omission of RT after CMR for bulk among advanced HL

# Advanced stage Hodgkin lymphoma RT for residual disease improves PFS

GHSG HD12 (Borchmann JCO 2011; von Tresckow Lancet Hematol 2018)

- Randomized 30 Gy vs obs
- >=1.5 cm residual after BEACOPP (no residual after **BEACOPP** PET) PET-, PFS<sub>4</sub> 92.6% 100 Α 90 1.0 80-0.9 PET+, PFS₄ 86.2% Freedom From Treatment Progression-free survival (%) 0.8 Failure (proportion) 70-0.7 60 0.6 30 Gv RT (94% irradiated) 50-No RT (22.9% irradiated) Compared with  $PFS_3 67.5\%$  in 0.5 40 0.4 RATHL for PET2+ patients (no RT) 0.3 30 % 95% CI (%) 0.2 5-year estimate 88.9 86.5 to 91.3 20 **PET-negative PR** Difference -5.8 -10.7 to -1.0 0.1 **PET-positive PR** 10 CR/CRu 48 60 72 84 12 24 36 0 36 12 24 48 60 Time (months) Time (months)

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

**GHSG HD15** (Engert Lancet Oncol 2012)

- Single arm, no randomization
- RT (30 Gy) for PET+ and >=2.5 cm



72

# My clinical practice for advanced stage HL

- ISRT if partial response (36-40 Gy)
- No consolidation for initial bulk after complete metabolic response
  - Exception for stage II (i.e. may be feasible to consolidate all disease)

# **Relapsed/refractory Hodgkin lymphoma** Indications for RT

#### First relapse

- Cytoreduction after salvage chemo or ASCT (36-45 Gy)
- Consolidation after ASCT or salvage chemo (30-36 Gy)
  - Primary chemo-refractory
  - FDG+ disease prior to ASCT

#### **Relapsed/refractory after ASCT**

- Primary therapy (PMH series, 61% RT alone)
  - CR 30%, PR 50%
  - PFS<sub>2</sub> 16%, local PFS<sub>2</sub> 65%, systemic PFS<sub>2</sub> 17%
  - OS<sub>5</sub>~30%
- Palliation

**Table 2**General indications for radiation therapy as part ofsalvage in patients with relapsed or refractory Hodgkinlymphoma

- 1. Localized relapse
- 2. Disseminated relapse but with sites including the following:
  - A. Bulky disease ( $\geq 5 \text{ cm}$ )
  - B. Persistent FDG-avid disease after salvage chemotherapy or after SCT
  - C. Critical for local control, such as the following:
    - i. Spinal cord compression (vertebral involvement)
    - ii. Nerve root compression
    - iii. Superior vena cava compression
    - iv. Airway compression
    - v. Lymphedema
    - vi. Hydronephrosis

Goda IJROBP 2012; Milgrom Cancer 2017; Constine IJROBP 2018

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🎔 #Refresher21 44

# Non-Hodgkin lymphomas (NHL)

#### B-cell lymphomas\*

#### Aggressive

- DLBCL
- PMBCL
- High-grade B-cell lymphoma
- Burkitt lymphoma

#### Indolent

- Follicular lymphoma
- MALT
- CLL/SLL

#### T-cell lymphomas\*

#### Aggressive

- NK/T-cell lymphoma
- Peripheral T-cell lymphoma

Indolent

• Mycosis fungoides

\*More commonly encountered (not a comprehensive list)

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🎔 #Refresher21 45

# Role of RT for DLBCL

### Early stage (Stage I/II)

- Bulky
- Non-bulky
- Partial response
- Skeletal involvement

#### Advanced stage (Stage III/IV)

- Bulky
- Skeletal involvement
- Partial response

### **Relapsed/refractory**

- Peri-transplant
- Bridge to systemic therapy
- Salvage
- Palliation

#### Contemporary trials evaluate RT role in the PET and rituximab era

# Case

64F from Ukraine with history of thyroid nodules

- Change in L thyroid nodule, biopsy nondiagnostic
- PET/CT
- L thyroid lobectomy
  - Small focus of DLBCL, CD10+, CD20+
  - Other pathologic features?



# Pathologic prognostic features

Cell of origin



- Gene expression profile is gold standard (fresh tissue)
- IHC used in clinical practice

# High-grade B cell lymphoma with MYC and BCL2 and/or BCL6 translocations



- New category in WHO 2016 classification of lymphoid neoplasms
- Double-/triple-hit lymphoma (DHL/THL)

Hans Blood 2004; Landsburg Br J Haematol 2014

# Case

#### 64F with resected DLBCL, GCBsubtype without *MYC* translocation

- Normal LDH
- Excellent performance status
- Risk stratification with international prognostic index (IPI)
  - Performance status >=2
  - Age >60 years
  - LDH >normal
  - Stage III/IV
  - Extranodal sites >=2

Table 2. Outcome according to International Prognostic Index (IPI)factors in 365 patients treated with R-CHOP in British Columbia

|                   | No. of IPI |            | 4-year PFS, | 4-year OS, |
|-------------------|------------|------------|-------------|------------|
| Risk group        | factors    | % Patients | %           | %          |
| Standard IPI      |            |            |             |            |
| Low               | 0, 1       | 28         | 85          | 82         |
| Low-intermediate  | 2          | 27         | 80          | 81         |
| High-intermediate | 3          | 21         | 57          | 49         |
| High              | 4, 5       | 24         | 51          | 59         |
| Revised IPI       |            |            |             |            |
| Very good         | 0          | 10         | 94          | 94         |
| Good              | 1, 2       | 45         | 80          | 79         |
| Poor              | 3, 4, 5    | 45         | 53          | 55         |

Sehn Blood 2007

# **Early stage DLBCL** RT role in pre-rituximab, pre-PET era

#### SWOG 8736, 1988-1995

- Stage I-IIE (bulk allowed for stage I)
- Median FU 17.7 years
- 75% DLBCL, 72% IPI 0-1
- CHOPx3+RT is equivalent to CHOPx8





• 43% received >4 cycles RCHOP

Lamy Blood 2018

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🔰 #Refresher21 51

# **Early stage, non-bulky DLBCL** RT role in rituximab and PET-era

### LYSA 02-03

- No difference in EFS with addition of RT
- No difference in EFS with CR versus PR  $\rightarrow$  role of RT for PR
- RT improves local control
  - 13 relapses RCHOP (5 initial site)
  - 10 relapses RCHOP+RT (none in RT site)
- Caveats: short FU (64 mo), IFRT, RCHOP14



RT may be omitted in patients with favorable, low volume disease with metabolic Lamy Blood 2018 complete response after RCHOPx4

# **Early stage, non-bulky DLBCL** Chemotherapy de-intensification

### FLYER

- Very favorable patients
  - No risk factors on aalPl (normal LDH, ECOG PS 0-1, stage I/II)
  - 18-60 yo (median 48)
- Randomized, non-inferiority trial
- <u>RT not allowed (5% received)</u>
- Can reduce chemo to RCHOPx4 + Rx2 for young, favorable patients



Poeschel Lancet 2020



Early stage, non-bulky DLBCL

### SWOG 1001 (n=132)

- Ph II, PET-adapted treatment for <10 cm, stage I/II</li>
- Less favorable cohort to LYSA 02-03
  - 27% smIPI 0, 10% without gross disease, median 62 yo (46% <60 yo)
- 11% with PET3-pos: 67% converted from PR to CR after IFRT-Zevalin
- Highlights role of RT for PR, confirms similar PFS<sub>5</sub> ~90% seen in LYSA, FLYER

Persky JCO 2020



# Case: 64F with stage I resected DLBCL of thyroid

#### Recommended RCHOPx3 $\rightarrow$ ISRT (30 Gy)

- Would otherwise require RCHOPx6 on LYSA study
- Need more data on RCHOPx4 for >60 yo

#### Consideration of older patients

- Equivalent outcomes between combinedmodality treatment (CMT) and full course chemo
- Lower toxicity rates (heme, neuropathy) with CMT
- Lower anthracycline exposure



Odejide Leuk Lymph 2015

# Dose for aggressive NHL

### **BNLI/NCRI** randomized trial

- Aggressive NHL randomized to 1) 40-45 Gy vs 2) 30 Gy
- 13% r/r, 8% palliative, 82% DLBCL
- Primary: ORR, secondary: FFLP
- Dose can be safely de-escalated to 30 Gy for aggressive NHL
- Caveats: Included patients treated with RT alone, no chemo data, no functional imaging

Lowry Radiother Oncol 2011

#### 2021 ASTRO ANNUAL REFRESHER COURSE • M

| Response       | Indolent  |           | Aggressive |           |
|----------------|-----------|-----------|------------|-----------|
|                | 24 Gy     | 40–45 Gy  | 30 Gy      | 40–45 Gy  |
| CR             | 145 (82%) | 138 (79%) | 249 (82%   | 251 (83%) |
| PR             | 18 (10%)  | 24 (14%)  | 29 (9%)    | 24 (8%)   |
| SD/            | 14 (8%)   | 12 (7%)   | 25 (8%)    | 24 (8%    |
| progression    |           |           |            |           |
| Death          | 0 (0%)    | 0 (0%)    | 1 (<1%)    | 3 (1%)    |
| Not assessable | 2         | 2         | 0          | 3         |
| No RT received | 1         | 1         | 5          | 3         |
| Missing        | 0         | 4         | 10         | 13        |
| Total          | 180       | 181       | 319        | 321       |



# My clinical practice for early stage DLBCL

#### Non-bulky (<7.5 cm)

IPI=0

- RCHOPx3 + ISRT [adapted SWOG 8736]
- RCHOPx4 if PET-neg [LYSA 02-03]\*

IPI>0

- RCHOPx3 + ISRT [adapted SWOG 8736]
- RCHOPx6

*RT for PET partial response* [LYSA 02-03, SWOG 1001]

\*Favored if all gross disease resected before treatment

- Role of RT is to allow minimization of systemic therapy
- Abbreviated RCHOP with RT is equivalent to full course RCHOP, and in older patients, may be better tolerated
- In low volume, very favorable patients, chemo alone may be adequate after a metabolic CR

# Case

51F with prolonged healing after dental work

- CT: 8.3x6 cm tumor of R masticator space, maxillary sinus, nasal cavity
- Biopsy DLBCL, GCB-subtype, FISH negative for *MYC* re-arrangement
- PET/CT: additional involvement of neck, mediastinum, bowel

Stage IV DLBCL with bulky involvement

Treated with RCHOPx6 → D4 (max sinus) Received ISRT (36 Gy) to initial bulk



# **Role of RT for bulky DLBCL** >60 yo patients

Prospective, non-randomized sequential arms from RICOVER-60



- RICOVER-60 arm: RCHOPx6 + Rx2 → IFRT (36 Gy) to sites of initial bulk (>=7.5 cm)
- *RT for bulk associated with improved PFS, OS*
- Ongoing, prospective studies: OPTIMAL>60 (>60 yo, PET-directed), UNFOLDER (<60 yo)

Held JCO 2014

# Role of RT for skeletal involvement



#### Re-analysis of 9 DSHNHL trials

- 292 (7.6%) with bone involvement
- RT for bone involvement recommended in trials, but not mandated
- Improved EFS with RT: 3-yr 75% vs 36% (p<.001)

Held JCO 2013

# My clinical practice for DLBCL with risk factors

#### RT offered for

- Bulk (>=7.5 cm)
- Skeletal involvement
- Metabolic partial response

Dose

- CR: 30 Gy
- PR: 36-50 Gy

- Role of RT is to supplement fullcourse chemotherapy (RCHOPx6) given presence of adverse risk factor
- No randomized, prospective data, though studies ongoing for bulk

# Relapsed/refractory DLBCL

#### **Indications for RT**

#### *Curative intent*

- Localized disease
- Incomplete response to salvage chemotherapy or ASCT
- Critical sites where LC is important
- Bulky disease
- Skeletal involvement

#### Palliative intent

- Symptoms
- Bridging to systemic therapy

#### Dose

#### Cytoreduction prior to ASCT

- 40-50 Gy (higher range if chemo-refractory)
- Hyperfractionated (if rapidly growing): 1.3-1.5 Gy BID to 35-40 Gy

#### Consolidation after ASCT

- CR (D1-3): 30-36 Gy
- Residual FDG-avidity: 40-45 Gy

#### Not transplant candidate

- Limited life expectancy: 8-39 Gy
- Curative-intent: 45-55 Gy

# **Novel therapies for DLBCL** Chimeric antigen receptor (CAR) T-cells



Removing barriers for the immune system to eradicate cancer cells

- Autologous lymphocytes, modified, and reinfused
- Modification of membrane receptor targeting specific antigen
- FDA-approved for r/r NHL
  - Tisagenlecleucel (2017)
  - Axicabtagene ciloleucel (2017)
  - Lisocabtagene maraleucel (2021)

Roberts Leukemia Lymphoma 2017

# How RT can interface with CAR T-cells



- Optimal "bridging RT" dose/fx and target unknown
  - Cytoreduce symptomatic and/or bulky disease
  - Limited by time to infusion
- If possible, hold off on starting RT until after leukapheresis
- RT does not appear to decrease CAR-T efficacy

Adapted from Tseng ASTRO 2019

# Role of RT for follicular lymphoma (FL)

#### **Localized** (15-30%)

Stage I, contiguous stage II

- Curable (DFS<sub>10</sub> 50-70%)
- ISRT alone (24 Gy, can boost to 30 Gy if bulky)
- Chemoimmunotherapy + ISRT [TROG 99.03]

#### Non-contiguous stage II

- Chemoimmunotherapy +/- ISRT
- Observation

### Advanced stage (70-85%), relapsed/refractory

- Considered incurable
- Systemic therapy (GELF criteria)
  - Symptoms
  - Threatened end-organ function, including cytopenias
  - Bulky disease (>=7 cm)
  - Large disease burden
- Observation
- If symptoms, palliative ISRT (2 Gy x 2)

# Workup for localized follicular lymphoma

### PET/CT

- >95% are FDG-avid
- Addition of PET alters management in ~45% of patients (*Peter MacCallum Cancer Center*)
  - 30% upstaged to stage III/IV
  - 15% treated with larger fields, including stage I→II

#### **Bone marrow biopsy**

### Pathology

- 90% with t(14;18)
- Grade influences clinical aggressiveness and treatment

| Grade 1-2 | <=15 centroblasts/HPF        |                         |
|-----------|------------------------------|-------------------------|
| Grade 3   | >15 centroblasts/HPF         |                         |
| Grade 3A  | Centrocytes still<br>present | Treat as G1-2<br>or G3b |
| Grade 3B  | Sheets of centroblasts       | Treat as DLBCL          |

# **Outcomes with RT alone for localized FL** Modern staging with PET/CT

ILROG multi-institutional retrospective study

- N=512 patients staged with PET/CT, 94% BM bx
- RT alone for stage I/II FL (G1-3a)
  - Median 30 Gy (IFRT, ISRT, INRT)
  - 80% stage I
- LC 97.6%: 1.6% in-field, 0.8% marginal relapse
  - Patterns of failure is predominantly distant (92%)
- Outcomes in PET-staged patients better than historical controls (40-50%)
  - Impact of modern staging
  - Previously underestimated RT's curative potential for truly localized disease



Brady Blood 2018

🕑 #Refresher21 67

# **Radiation dose for FL** 24 Gy is standard of care

### **BNLI randomized study**

- N=361 indolent NHL (FL 64%, MZL 19%)
- Randomized to
  - 40-45 Gy/20-23, versus
     24 Gy/12
- 24 Gy is non-inferior to 40-45 Gy with respect to ORR: 92% vs 93%
- No difference in FFLP or PFS

(b) Progression-free survival



(a) Freedom from local progression



# **Radiation dose for FL** 24 Gy is standard of care

#### FORT non-inferiority randomized trial

- Median FU 73.8 mo
- 24 Gy is more effective than 4 Gy
  - Time to local progression (primary)
  - ORR



• 4 Gy (2 Gy x 2) useful alternative for palliation

|                        | 24 Gy                       |                                                   | 4 Gy                     |                                                   | p value* |
|------------------------|-----------------------------|---------------------------------------------------|--------------------------|---------------------------------------------------|----------|
|                        | Complete<br>response<br>(%) | Complete response<br>plus partial<br>response (%) | Complete<br>response (%) | Complete response<br>plus partial<br>response (%) | _        |
| All patients           | 176/260 (68%)               | 236/260 (91%)                                     | 137/281 (49%)            | 227/281 (81%)                                     | 0.0095   |
| Follicular lymphoma    | 152/226 (67%)               | 205/226 (91%)                                     | 116/243 (48%)            | 194/243 (80%)                                     | 0.0096   |
| Marginal zone lymphoma | 24/34 (71%)                 | 31/34 (91%)                                       | 21/38 (55%)              | 33/38 (87%)                                       | 0.71     |

Hoskin Lancet Oncol 2014; Hoskin Lancet 2021

# **ISRT fields for FL** RT alone

"CTV should incorporate GTV and include as a minimum adjacent lymph nodes in that site and a generous margin dictated by the clinical situation."

70M with stage I G1-2 FL of R groin

- Treated 24 Gy/12
- Achieved complete metabolic response (D2) 3 months post-RT



CT simulation scan, frog legged





PET/CT





Illidge IJROBP 2014

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021

🎔 #Refresher21 70

# Marginal zone lymphoma (MZL) subtypes

Extranodal MZL of mucosa associated lymphoid tissue (MALT lymphoma) (5-10% NHL)

- May comprise ~50% of lymphomas at certain sites:
  - Stomach-65% of MALT
  - Orbit
  - Lung
- Other sites: breast, salivary glands, Waldeyer's ring, thyroid
- 60-70% present with stage I/II

#### Nodal MZL (1% NHL)

#### Splenic MZL (<1% NHL)

# Gastric MALT

#### Workup

- Endoscopy with adequate biopsies
- If H. pylori positive, test for t(11;18) by PCR or FISH
  - t(11:18) associated with higher rates of relapse or no response to antibiotics
- Diagnostic CT CAP +/- PET (50% EMZL FDG+)
- Can involve duodenum and/or peri-gastric LN

Wundisch JCO 2005; Schmelz J Gastroenterol 2019

### **Treatment for stage I/II**

#### H. pylori-pos

- Antibiotic therapy for H. pylori eradication  $\rightarrow$  80% with CR of MALT
- Time to CR can be slow
  - 60% CR in 3 mo
  - 25% CR in 12 mo
  - 15% CR >12 mo
- ISRT as salvage treatment

### H. pylori-neg or H. pylori-pos with t(11;18)

- ISRT (CR 80-100%, FFP 90-100%)
- Rituximab (if RT contraindicated)
## Case

57F presented with hematemesis, epigastric pain, and early satiety.

- Stage I gastric MALT, H. pylori negative
- Simulation
  - NPO 3 hours prior
  - 3 DIBH scans with small volume barium (30 cc)
  - Arms up
- CTV: entire stomach including gastro-duodenal junction, contour across all 3 scans to create "iCTV"



VMAT (2 coplanar arcs), 25.2 Gy/14 fx Daily ondansetron pre-tx with PPI

# Gastric MALT

#### Techniques

- 3D-CRT, IMRT/VMAT
- DIBH
  - Lower mean heart, lung, and liver dose compared to free breathing
- Consider daily CBCT to assess reproducibility of stomach

**Dose**: 24-30 Gy in 1.5-2 Gy/fx



HELYX II phase 2 trial (n=29)

 No difference in CR at 12 months (100%) or risk of recurrence (median FU 79 mo)

Specht IJROBP 2014; Schemlz J Gastroenterol 2019; Choi Radiat Oncol 2019

**2021 ASTRO ANNUAL REFRESHER COURSE •** MARCH 19-21, 2021

# MALT of non-gastric sites

E.g. Ocular adnexa, salivary glands, lung, skin

- Definitive treatment for early-stage with RT alone
- ISRT: 24 Gy/12 fractions
- Can consider 4 Gy/1-2 fractions in palliative setting

Guidelines

#### Modern Radiation Therapy for Extranodal Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

Joachim Yahalom, MD,\* Tim Illidge, MD, PhD,<sup>†</sup> Lena Specht, MD, PhD,<sup>‡</sup> Richard T. Hoppe, MD,<sup>§</sup> Ye-Xiong Li, MD,<sup>||</sup> Richard Tsang, MD,<sup>¶</sup> and Andrew Wirth, MD<sup>#</sup>, on behalf of the International Lymphoma Radiation Oncology Group

# Changes in management in era of COVID-19

Special Report

#### ILROG emergency guidelines for radiation therapy of hematological malignancies during the COVID-19 pandemic

Joachim Yahalom,<sup>1</sup> Bouthaina Shbib Dabaja,<sup>2</sup> Umberto Ricardi,<sup>3</sup> Andrea Ng,<sup>4</sup> N. George Mikhaeel,<sup>5</sup> Ivan R. Vogelius,<sup>6</sup> Tim Illidge,<sup>7</sup> Shunan Qi,<sup>8</sup> Andrew Wirth,<sup>9</sup> and Lena Specht,<sup>6</sup> on behalf of the International Lymphoma Radiation Oncology Group (ILROG) Considerations for Managing Patients With Hematologic Malignancy During the COVID-19 Pandemic: The Seattle Strategy

Mary-Elizabeth M. Percival, MS, MD<sup>1,2,3</sup>; Ryan C. Lynch, MD<sup>1,3,4</sup>; Anna B. Halpern, MD<sup>1,2,3</sup>; Mazyar Shadman, MPH, MD<sup>1,3,4</sup>; Ryan D. Cassaday, MD<sup>1,2,3</sup>; Chaitra Ujjani, MD<sup>1,3,4</sup>; Andrei Shustov, MD<sup>1,2,4</sup>; Yolanda D. Tseng, MD<sup>1,3,5</sup>; Catherine Liu, MD<sup>1,3,6,7</sup>; Steven Pergam, MD<sup>1,3,6,7</sup>; Edward N. Libby, MD<sup>1,3,4</sup>; Bart L. Scott, MD<sup>1,3,4</sup>; Stephen D. Smith, MD<sup>1,3,4</sup>; Damian J. Green, MD<sup>1,3,4</sup>; Ajay K. Gopal, MD<sup>1,3,4</sup>; and Andrew J. Cowan, MD<sup>1,3,4</sup>

- In vaccine era, no major changes to my clinical practice
  - May delay RT start for patients with localized, low-grade NHL or NLPHL per patient comfort
- Increased use of 2 Gy x 2 for low-grade NHL to defer systemic therapy and risk of immune suppression prior to vaccine

Yahalom Blood 2020; Percival JOP 2020

# Summary and key points

### Modern radiation therapy for lymphoma

Modern RT aims to maintain excellent disease control while minimizing late toxicity

- Smaller fields and 3D treatment planning (ISRT, INRT)
- Lower doses (20-30 Gy HL, 30 Gy DLBCL, 24 Gy or 4 Gy FL/MZL)

Many de-escalation protocols, including those for RT omission, use a PETadapted approach

- RT cannot be safely omitted for HL even with a CMR to ABVD
- Ongoing studies for DLBCL

Radiation remains the cornerstone of treatment for localized, indolent NHL

 Improved diagnostic imaging and workup better select those who benefit from local therapy

## **Resources: ILROG guidelines**

| Hodgkin lymphoma        | Modern RT for HL (ISRT)                           | <i>Specht IJROBP 2014<br/>Wirth IJROBP 2020</i> |
|-------------------------|---------------------------------------------------|-------------------------------------------------|
|                         | RT for r/r HL                                     | Constine IJROBP 2018                            |
| Non-Hodgkin<br>Iymphoma | Modern RT for nodal NHL                           | Illidge IJROBP 2014                             |
|                         | Modern RT for extra-nodal NHL                     | Yahalom IJROBP 2015                             |
|                         | RT for r/r DLBCL                                  | Ng IJROBP 2018                                  |
| Other hematologic       | Total body irradiation                            | Wong IJROBP 2018                                |
|                         | RT for CNS leukemia                               | Pinnix IJROBP 2018                              |
|                         | RT for lymphoblastic lymphoma                     | Dabaja IJROBP 2018                              |
|                         | Modern RT for primary cutaneous lymphoma          | Specht IJROBP 2015                              |
|                         | RT for solitary plasmacytoma and multiple myeloma | Tsang IJROBP 2018                               |
| Proton therapy          | Proton therapy for mediastinal lymphoma           | Dabaja Blood 2018                               |
| Mini atlas              | ISRT guidelines                                   | Dabaja IJROBP 2020                              |
| Other                   | RT for lymphomas during COVID-19                  | Yahalom Blood 2020                              |
|                         | Optimal use of imaging for RT                     | Mikhaeel IJROBP 2019                            |

2021 ASTRO ANNUAL REFRESHER COURSE • MARCH 19-21, 2021