Best Practices for the Continuum of Care: A Multidisciplinary Approach

Jacob Sands, MD, Medical Oncology, Dana-Farber Cancer Institute Dawn Owen, MD, PhD, Radiation Oncology, Mayo Clinic Rochester

OUTLINE FOR WEBINAR 2

- Multidisciplinary coordination of chemoradiation and durvalumab
- Factors in determining the selection of chemotherapeutic agents
- Radiation considerations
- Diagnosis and management of pneumonitis

CASE 1

72 year old male with history of hypertension, hyperlipidemia, BPH; 14 PYHx quit smoking 25 years ago:

- Presents with back pain for which CT T spine done
- Incidental finding of 2.5 cm LUL nodule
- PET-CT shows FDG avid 2.7 cm LUL nodule, left hilar, AP window, para-aortic, prevascular adenopathy
- MR brain is negative for metastasis
- EBUS shows station 4L positive for adenocarcinoma, TTF1 positive, tumor cells 100% PDL1 expressing
- PFTs → FEV1 1.94 L (75% predicted), FVC 2.77 L (81% predicted), DLCO 81%
- NGS shows KRAS G12C mutation, no other mutations

Radiation Considerations

Dawn Owen, MD, PhD

WHAT MAKES A PATIENT TREATABLE?

- First principles:
 - ECOG status
 - Weight stability
 - PFTs (FEV1 > 1 L, DLCO > 40%)
 - Social support
 - Comorbidities
 - "Radioencompassable disease"

WHAT MAKES A TUMOR RADIOENCOMPASSABLE?

- It's not the tumor, it's the amount of normal lung that matters!
- Determined at the time of radiation simulation and planning
- Will address strategies to deal with tumors where there is a high tumor to lung ratio in Webinar 3

RESTAGE CHEST IF IMAGING IS OLD!

- Really need to time start of RT with chemotherapy
- Want to minimize the time between diagnostic imaging e.g. PET-CT and start of chemoradiation (goal to start of chemoradiation from tissue diagnosis to treatment should be about 1 month)
- If imaging is more than 1 month old, would obtain repeat imaging with diagnostic CT chest with IV contrast
- Ideally want to start CRT for locally advanced NSCLC within a week of simulation due to risk of progression

RADIATION SIMULATION

- It is really important to consider motion management for lung tumors
- Standard of care is a 4DCT scan to assess motion and generation of an IGTV for both nodal volumes and the primary tumor

CONTOURING

- Must contour cord (canal) heart, left and right lung separately, lung total structure (lung – GTV), esophagus at a minimum
- Would also consider contouring liver, stomach for lower lobe tumors and contour plexus for apical tumors
- For volume delineation:
 - GTV
 - IGTV (if free breathing 4DCT)
 - CTV (5-10 mm expansion of IGTV) → do not include structures where cancer is unlikely to have spread e.g. crop from bone, heart, esophagus
 - PTV (5 mm expansion with daily CBCT)

RADIATION PLANNING

• IMRT is preferred (reduces risk of RP compared to 3DCRT – 3.5% vs 7.9%)

Table A4. Univariate Regression Model for CTCAE Grade 3 or Greater Pneumonitis						
Covariate	Comparison	OR (95% CI)	Р			
Radiation therapy technique	3D-CRT (RL) v IMRT	0.43 (0.18 to 0.99)	.046			
Radiation therapy dose level	60 (RL) <i>v</i> 74 Gy	0.64 (0.28 to 1.45)	.284			
AJCC stage group	IIIA (RL) <i>v</i> IIIB	2.01 (0.93 to 4.32)	.075			
PTV volume, mL	Continuous	1.001 (1.000 to 1.002)	.048			
Mean lung dose	Continuous	1.097 (0.998 to 1.206)	.056			
Lung V5, %	Continuous	1.020 (0.994 to 1.047)	.135			
Lung V20, %	Continuous	1.069 (1.012 to 1.129)	.017			

NOTE. Results are from respective univariable logistic regression.

Abbreviations: 3D-CRT, three-dimensional conformal external beam radiation therapy; AJCC, American Joint Commission on Cancer; CTCAE, Common Terminology Criteria for Adverse Events (version 3); IMRT, intensity-modulated radiation therapy; OR, odds ratio; PTV, planning treatment volume; RL, reference level; V, volume receiving radiation dose.

Chun et al., JCO 2017

CASE EXAMPLE

CASE EXAMPLE

CASE EXAMPLE

PET CT PRE DURVA POST CRT (3 WEEKS POST)

Systemic Therapy with Radiation for unresectable NSCLC

Jacob Sands, MD

PACIFIC Update

 Durvalumab after completing concurrent chemo and radiation demonstrated ~16% absolute improvement in 4-year PFS.

Faivre-Finn JTO 2020

Let's start with the chemotherapy regimen

- PACIFIC required prior concurrent chemotherapy and radiation for enrollment to randomization: durvalumab vs placebo x1 year
- Eligible chemotherapy regimens included <a>2 cycles platinum-based:
 - Etoposide
 - Vinblastine
 - Vinorelbine
 - Taxane (docetaxel or paclitaxel)
 - Pemetrexed

NCCN Guidelines regimens

- Squamous:
 - Carboplatin AUC 2 and Paclitaxel 45-50 mg/m2 weekly
 - Cisplatin 50 mg/m2 days 1, 8, 29, 36 and Etoposide 50 mg/m2 days 1-5 and 29-33
- Non-squamous:

mini

- Carboplatin AUC 2 and Paclitaxel 45-50 mg/m2 weekly
- Cisplatin 50 mg/m2 and Etoposide 50 mg/m2
- Carboplatin AUC 5 and Pemetrexed 500 mg/m2 Q3 weeks
- Cisplatin 75 mg/m2 and Pemetrexed 500 mg/m2 Q3 weeks

Sequential vs Concurrent Chemo and Radiation

- Chemotherapy in this trial was mitomycin, vindesine, and cisplatin
- Modern chemotherapy regimens are different
- Standard of care is concurrent chemotherapy with radiation
- Sequential strategy is utilized if there is concern about tolerating concurrent chemoradiation

Furuse et al. JCO 1999

Concurrent vs Sequential

cisplatin 50 mg/m² IV over 30-60 minutes on days 1 and 8 and 29 and 36 69.6 Gy/6 wks/58 x 1.2 Gy twice-daily fractions (at least 6 hours apart)

Curran, et al. J Natl Cancer Inst 2011;103:1452-1460

CONTINUUM OF CARE FOR NON-RESECTABLE NSCLC

Patients at Risk

195

195

Arm 1

Arm 2

Years from Random Assignment

36

53

24

41

20

31

61

73

113

120

Concurrent vs Sequential

<u>Arm 1:</u> vinblastine 5 mg/m² IV bolus weekly first 5 weeks cisplatin 100 mg/m² IV over 30-60 minutes, days 1 & 29

(starting day 50) 63 Gy/7 wks/34 daily fractions (1.8 Gy x 25 fx, then 2.0 Gy x 9 fx)

<u>Arm 2:</u>

vinblastine 5 mg/m² IV bolus weekly first 5 weeks cisplatin 100 mg/m² IV over 30-60 minutes, days 1 & 29 63 Gy/7 wks/34 daily fractions (1.8 Gy x 25 fx, then 2.0 Gy x 9 fx)

<u>Arm 3:</u>

oral etoposide 50 mg twice daily x 10 only on RT treatment days 1-5, 8-12, 29-33 and 36-40 (75 mg/day if body surface area < 1.7 m^2) cisplatin 50 mg/m² IV over 30-60 minutes on days 1 and 8 and 29 and 36 69.6 Gy/6 wks/58 x 1.2 Gy twice-daily fractions (at least 6 hours apart)

Curran, et al. J Natl Cancer Inst 2011;103:1452-1460

Cisplatin and Etoposide

- Cisplatin 50 mg/m2 days 1, 8, 29, 36
- Etoposide 50 mg/m2 days 1-5, 29-33
- Concurrent Radiation:
 - 2D planning to 61 Gy
- Then 2 additional cycles of chemo

mini

Albain et al. JCO 2002

Cisplatin and Etoposide

Characteristic	No. of Patients	%
Age, years		
Median	58	
Range	36-7	8
Female sex	9	18
Race		
Black	5	10
Hispanic	2	4
Asian	3	6
Performance status		
0	23	46
1	27	54
Weight loss*		
< 5%	28	57
5 to < 10%	13	26
10%-20%	6	11
> 20%	3	6
Elevated lactate dehydrogenase	9	18
Squamous histology	24	48
T and N substage		
T4 N0, 1	18	36
T4 N2	12	24
N3	20	40

	Frequency (n = 50)	
- (- · · · ·	No. of	~
Type of Toxicity*	Patients	%
Grade 4 neutropenia	16	32
Esophagitis/pharyngitis		
Grade 3	6	12
Grade 4	4	8
Respiratory infection		
Grade 3	3	6
Grade 4	1	2
Grade 3-4 anemia	14	28
Grade 3 malaise/fatigue	6	12
Grade \geq 3 dehydration	2	4
Grade \geq 2 radiation pneumonitis	0	

Albain et al. JCO 2002

Carboplatin and Paclitaxel

 Carboplatin AUC 2 and Paclitaxel 45 mg/m2 weekly followed by consolidation carboplatin AUC 6 and paclitaxel 200 mg/m2 Q3wks x2

Bradley et al. Lancet Oncol. 2015

Cisplatin Pemetrexed

- Cisplatin 75 mg/m2 and Pemetrexed 500 mg/m2 Q 3wks x3 cycles concurrent with radiation (60-66 Gy) followed by pemetrexed x4 cycles
- Superiority study: Negative

mini

- Trend toward improved mPFS
- Improved AE profile with pemetrexed (alopecia, G3 neutropenia / neutropenic fever)

Senan et al. PROCLAIM; JCO 2016

Carboplatin Pemetrexed

- Arm A: Carboplatin AUC 5 and Pemetrexed 500 mg/m2 Q3 wks x4 cycles concurrent with radiation (70 Gy) followed by pemetrexed x4 cycles
- Arm B: also includes cetuximab
- The limitation of benefit to non-squamous with pemetrexed was not known at the time of this study

PACIFIC – Durvalumab post-chemoradiation

Schema as presented by Dr. Spigel, ASCO 2021

PACIFIC – Durvalumab post-chemoradiation

- Durvalumab x1 year after chemoradiation shows a 5-year PFS of 33.1%.
- This raises the question: Does the inclusion of durvalumab increase the rate of cure?

PACIFIC sub-groups

- Does PD-L1 expression impact use of durvalumab?
- What about EGFR mutation + disease?
- Does it matter when durvalumab is started?

Subgroup	Durvalumab	Placebo	Unstratified Hazard Ratio for Death (95% CI)	
All patients	183/476 (38.4)	116/237 (48.9)		0.68 (0.54-0.86)
Sex			1	
Male	141/334 (42.2)	80/166 (48.2)	H•	0.78 (0.59-1.03)
Female	42/142 (29.6)	36/71 (50.7)	H-+	0.46 (0.30-0.73)
Age at randomization				
<65 years	89/261 (34.1)	58/130 (44.6)	⊢-• I	0.62 (0.44-0.86)
265 years	94/215 (43.7)	58/107 (54.2)	⊢• +I	0.76 (0.55-1.06)
Smoking status			1	
Smoker	169/433 (39.0)	103/216 (47.7)	H	0.72 (0.56-0.92)
Non-smoker	14/43 (32.6)	13/21 (61.9)	H .	0.35 (0.16-0.76)
NSCLC disease stage				
IIIA	101/252 (40.1)	70/125 (56.0)		0.63 (0.46-0.85)
IIIB	79/212 (37.3)	44/107 (41.1)	H-+++	0.77 (0.53-1.11)
Tumor histologic type			1	
Saussous	103/224 (46.0)	58/102/54.9)	i	0 72 /0 52 0 991
Nee courses	R0/252 (31 7)	60/102 (04.8)		0.72 (0.02-0.99)
Non-squamous	80/252 (31.7)	00/135 (44.4)		0.61 (0.44-0.86)
Best response to prior treatment			1	
Complete response	2/9 (22.2)	3/7 (42.9)		-
Partial response	83/237 (35.0)	50/112 (44.6)		0.69 (0.49-0.99)
Stable disease	93/223 (41.7)	61/115 (53.0)	⊢ •−-1;	0.66 (0.48-0.91)
Race				
White	141/337 (41.8)	82/157 (52.2)	I	0.71 (0.54-0.93)
Black/African-American	4/12 (33.3)	2/2 (100.0)		-
Asian	36/120 (30.0)	29/72 (40.3)		0.62 (0.38-1.01)
Other	2/6 (33.3)	3/6 (50.0)	1	-
PD-L1 status				
≥25%	37/115 (32.2)	23/44 (52.3)		0.46 (0.27-0.78)
<25%	74/187 (39.6)	41/105 (39.0)	⊢•Ⅰ	0.92 (0.63-1.34)
Unknown	72/174 (41.4)	52/88 (59.1)		0.62 (0.43-0.89)
EGFR mutation			1	
Positive	10/29 (34.5)	6/14 (42.9)	1	-
Negative	117/317 (36.9)	80/165 (48.5)	H•-1:	0.64 (0.48-0.86)
Unknown	56/130 (43.1)	30/58 (51.7)	H-+++	0.77 (0.49-1.20)
Type of prior chemotherapy			1	
Gemcitabine-based	4/9 (44.4)	2/5 (40.0)		-
Non-gemcitabine-based	179/467 (38.3)	114/232 (49.1)		0.67 (0.53-0.85)
Cisplatin	94/266 (35.3)	64/129 (49.6)	H	0.59 (0.43-0.81)
Carboplatin	84/199 (42.2)	47/102 (46.1)		0.86 (0.60-1.23)
Cisplatin and carboplatin	3/8 (37.5)	4/5 (80.0)		-
Last radiation to randomization	201120 (22.5)	25/02/050 53		0 40 10 07 0 07
<14 days	38/120 (32.5)	35/62 (56.5)		0.42 (0.27-0.67)
214 days	144/356 (40.4)	81/1/5 (46.3)		0.81 (0.62-1.06)
who performance status				
0	87/234 (37.2)	49/114 (43.0)		0.82 (0.57-1.16)
1*	96/242 (39.7)	67/123 (54.5)		0.58 (0.42-0.79)
Region			1	
Asia	35/109 (32.1)	27/68 (39.7)	⊢ + I	0.67 (0.41-1.11)
Europe	94/217 (43.3)	48/102 (47.1)	H-+H-1	0.86 (0.61-1.21)
North America and South America	54/150 (36.0)	41/67 (61.2)	H-+ 1	0.46 (0.30-0.69)
			0.25 0.50 1.00 2.00	
			0.20 0.00 1.00 2.00	
				-
			Durvalumab better Placebo be	tter

Antonia et al. NEJM 2018 supplement

	Subgroup	Durvalumab	Placebo	Unstratified Hazard Ratio for I	Death (95% CI)	
	All patients	183/476 (38.4)	116/237 (48.9)	H H I	0.68 (0.54-0.86)	
	Sex			1		
	Male	141/334 (42.2)	80/166 (48.2)	H•1	0.78 (0.59-1.03)	
	Female	42/142 (29.6)	36/71 (50.7)		0.46 (0.30-0.73)	
	<65 years	89/261 (34.1)	58/130 (44.6)		0.62 (0.44-0.86)	
	≥65 years	94/215 (43.7)	58/107 (54.2)	H-+H	0.76 (0.55-1.06)	
	Smoking status			1		
	Smoker	169/433 (39.0)	103/216 (47.7)	Heri	0.72 (0.56-0.92)	
	Non-smoker NSCLC disease stage	14/43 (32.6)	13/21 (61.9)	+ i	0.35 (0.16-0.76)	
	IIIA	101/252 (40.1)	70/125 (56.0)	L	0.63 (0.46-0.85)	
	IIIB	79/212 (37.3)	44/107 (41.1)	H + + + +	0.77 (0.53-1.11)	
	Tumor histologic type			1		
	Squamous	103/224 (46.0)	56/102 (54.9)	⊢ •−1	0.72 (0.52-0.99)	
	Non-squamous	80/252 (31.7)	60/135 (44.4)	→ → → ↓	0.61 (0.44-0.86)	
	Best response to prior treatment			1		
	Complete response	2/9 (22.2)	3/7 (42.9)	1		
PD-L1 status						
≥25%	37/115 (32.2)	23/44 (52.3)			0.46 (0.27-0.78)
-0.5%	74407	20.01	441405 100 /		1 1 1	0.00 (0.00 1.04)
<25%	74/187 (39.6)	41/105 (39.0))		0.92 (0.63-1.34)
Unknown	72/174 (41.4)	52/88 (59.1)		H-+1	0.62 (0.43-0.89)
FOFD	Sector and					
EGFR mutation						
Positive	10/29 (34	4.5)	6/14 (42.9)		1	-
Negative	117/317	(36.9)	80/165 (48.5		H	0.64 (0.48-0.86)
Linknown	56/130 (/	(3.1)	30/58 (51 7)			0.77 (0.49-1.20)
Olikitowii	00/100 (-	+3.1)	30/00 (01.7)			0.11 (0.45-1.20)
	Gemcitabine-based Non-gemcitabine-based	4/9 (44.4) 179/467 (38.3)	2/5 (40.0) 114/232 (49.1)		0.67 (0.53-0.85)	
	Cisplatin	94/266 (35.3) 84/199 (42.2)	64/129 (49.6) 47/102 (46.1)		0.59 (0.43-0.81)	
Last radiation to ran	domization				1	
<14 days	39/120 (32.5)	35/62 (56.5)			0.42 (0.27-0.67)
	444/350	(40.4)	04/475 /40 3			0.01 (0.00 1.00)
214 days	144/300	(40.4)	81/1/5 (46.3)		0.81 (0.62-1.06)
	1*	96/242 (39.7)	67/123 (54.5)		0.58 (0.42-0.79)	
	Region			1		
	Asia	35/109 (32.1)	27/68 (39.7)	H H	0.67 (0.41-1.11)	
	Europe	94/217 (43.3)	48/102 (47.1)		0.86 (0.61-1.21)	
	North America and South America	54/150 (36.0)	41/07 (01.2)		0.46 (0.30-0.69)	
				0.25 0.50 1.00 2	T .00	
				Durvalumab better Placeb	obetter	

Antonia et al. NEJM 2018 supplement

PACIFIC Four Year Update

EGFR mutation				
Positive	17/29 (58.6%)	7/14 (50.0%)	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	0.97 (0.40-2.33)
Negative	156/317 (49.2%)	105/165 (63.6%)		0.64 (0.50-0.83)
Unknown	74/130 (56.9%)	37/58 (63.8%)		0.80 (0.54–1.19)
Last radiation to randomization				
<14 days	59/120 (49.2%)	41/62 (66.1%)		0.53 (0.35-0.79)
≥14 days	188/356 (52.8%)	108/175 (61.7%)		0.78 (0.61–0.99)
PD-L1 status				
≥25%	50/115 (43.5%)	26/44 (59.1%)		0.53 (0.33–0.85)
<25%	102/187 (54.5%)	62/105 (59.0%)	⊢ ● 	0.85 (0.62-1.17)
Unknown	95/174 (54.6%)	61/88 (69.3%)		0.67 (0.48-0.92)
1–24% (post hoc analysis)	47/97 (48.5%)	28/47 (59.6%)	⊢	0.69 (0.43-1.10)
≥1% (post hoc analysis)	97/212 (45.8%)	54/91 (59.3%)		0.60 (0.43-0.84)
<1% (post hoc analysis)	55/90 (61.1%)	34/58 (58.6%)	• • • • • • • • • • • • • • • • • • •	1.05 (0.69-1.62)
			0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8	
			Durvalumab better Placebo better	

Faivre-Finn et al. JTO 2021

PACIFIC by PD-L1

- Exploratory analyses by PD-L1 cohorts was performed
- Durvalumab was favored over placebo across all analyses except OS in the <1% cohort.

mini

Paz-Ares et al. Annals of Oncology 2020

PACIFIC by PD-L1

- Exploratory analyses by PD-L1 cohorts was performed
- Durvalumab was favored over placebo across all analyses except OS in the <1% cohort.

mini

Paz-Ares et al. Annals of Oncology 2020

EGFR in resectable NSCLC

Wu et al. ADAURA. NEJM 2020

Important Points for Discussion

- Does PD-L1 expression impact use of durvalumab?
- What about EGFR mutation + disease?
- Does it matter when durvalumab is started?

Pneumonitis – Radiation vs ICI

Dawn Owen, MD, PhD

PATIENT PRESENTS WITH DYSPNEA 3 MONTHS POST CRT...

COMBINATION CRT AND DURVALUMAB = ???MORE PNEUMONITIS

Study	Treatment scheme	All AEs (%)	Most common all grades AEs (%)	G3/4 AEs (%)	Most common G3/4 AEs (%)	lr-AEs (%)	Discontinuation (%)	Death due to AEs
PACIFIC OS analysis#	Durvalumab	96.8%	Cough (35.4%) Pneumonitis or RP* (33.9%) Fatigue (23.8%) Dyspnoea (22.3)	29.9%	Pneumonia (4.4%) Pneumonitis or RP*(3.4%) Anaemia (2.9%)	24.2%	15.4%	4.4%
	Placebo	94.9%	Cough (25.2%) Pneumonitis or RP* (24.8%) Fatigue (20.5%) Dyspnoea (23.9%)	26.1%	Pneumonia (3.8%) Pneumonitis or RP*(2.6%) Anaemia (3.4%)	8.1%	9.8%	5.6%

 Table 2. Overview of the results (tolerability) of the PACIFIC study.

*Pneumonitis or radiation pneumonitis was assessed by investigators with subsequent review and adjudication by the study sponsor. In addition, pneumonitis is a grouped term that includes acute interstitial pneumonitis, interstitial lung disease, pneumonitis, and pulmonary fibrosis. #Antonia *et al.*³⁰

AE, adverse event; Ir, Immune-related; OS, overall survival; RP, radiation pneumonitis.

Botticella et al., Ther Adv Resp Dis 2019 Vansteenkiste et al., ESMO 2019

WORKUP AND MANAGEMENT OF PNEUMONITIS

Figure 3 Patient Management Algorithm

Naidoo et al., Clin Lung Cancer 2020

CLASSIC RISK FACTORS FOR RADIATION PNEUMONITIS (PRE ICI)

	Parameters	Risk increase	References
Patients characteristics	Age	over 65	(41–46)
	Gender	female	(44, 47, 48)
	Smoking	non-smokers	(43, 48–53)
	Pre-existing lung diseases	ECOG performance 3–4	(45, 46, 54–62)
	Genetic predisposition	SNPs in various genes	(63–74)
	Tumor location	Base, the upper half of the lung, the region adjacent to the pleura	(51, 70, 75–79)
	Low KPS	Radiation pneumonitis	(41, 48, 77, 78)
Dosimetric parameters	Chemotherapy	Most chemotherapies	(41, 46, 48, 56, 61, 79–90)
	Chemo-XRT schedule:	Sequential > concurrent fraction size >2.67 Gy	(46, 48, 61, 83, 91)
	Targeted therapies	TKI monotherapy and with RT	(92–96)
	Mean Lung Dose (MLD)	Higher MLD	(97–103)
	Dose to the heart	Undetermined	(104, 105)

TABLE 1 | Dosimetric and biological parameters in radiation-induced lung toxicity.

Patient's characteristics (age, gender, smoking status, pulmonary status, genetic predisposition) and dosimetric parameters (chemotherapy, radiotherapy, tumor location, lung volume, NTCP, MLD) affect the probability of radiation-induced lung toxicity. >, major; NTCP, normal tissue complication probability; MLD, mean lung dose.

Giuranno et al., FONC 2019

PATHOPHYSIOLOGY OF RADIATION PNEUMONITIS

Giuranno et al., FONC 2019

PATHOPHYSIOLOGY OF IMMUNE RELATED PNEUMONITIS

Zhai et al., Cancer Med Biol, 2020

INTERACTION OF RADIATION WITH ICI IN THE LUNG

Fig. 2 Immune mechanisms of RRP triggered by anti-PD-1/PD-L1. The immune checkpoint inhibitors evoke an inflammatory reaction in previously irradiated fields

Teng et al., BMC Medicine 2020

ICI after RT may cause a recall phenomenon via an inflammatory response-reactivation to potentiate RP

ARE WE SEEING MORE PNEUMONITIS WITH CRT + DURVALUMAB?

Study	Country (region)	Population	All pneumonitis (%)	G2 pneumonitis (%)	G3–5 pneumonitis (%)
Fukui et al. ²³	Japan	108	85	26.0	2.0
Chu et al. ²⁴	China (Taiwan)	31	17.2	NR	6.9
Jung et al. ²⁵	Korea	21	81	42.9	14.3
Sakaguchi et al.33	Japan	73	73.9	NR	5.5
PACIFIC Japan cohort ¹⁴	Japan	112	54.2	NR	5.6
Current study	China	20	80.0	45.0	0
Pooled data	Asian	365	67.1	31.2	4.4
PACIFIC	Multicountry	476/709	33.9	NR	3.4
LUN14-179	USA	92	NR	10.8	6.5

 Table 4
 Pneumonitis in Asian stage III NSCLC following ICI consolidation therapy

G2, grade 2; G3–5, grades 3–5; NR, not reported.

Zhang et al., Thor Cancer 2020

Note that Asian descent was an independent risk factor per PACIFIC for RP

DO WE NEED TO REVISIT LUNG CONSTRAINTS IN THE PACIFIC ERA?

Table 2

Relationship between radiation dosage, consolidation treatment and RT pneumonitis by chi-square.

Parameter		No. of patient	RT pneumonitis	p value	RT Pneumonitis \geq Grade 2	p value
MLD	<20 Gy	44	19(43.2 %)	0.024	7(15.9 %)	< 0.001
	≥20 Gy	17	13(76.5 %)		12(70.6 %)	
Lung V20	<35 %	40	17(42.5 %)	0.058	6(15.0 %)	< 0.001
	≥35 %	21	15(71.4 %)		13(61.9 %)	
Consolidation	Observation	40	15(37.5 %)	0.001	8(20.0 %)	0.018
	Durvalumab	21	17(81.0 %)		11(50.0 %)	

RT, radiation; MLD, Mean lung dose; Lung V20, the volume of lung parenchyma that received 20 Gy or more.

Table 3

Multivariable cox proportional hazards regression analysis for radiation pneumonitis.

		RT pneumo	RT pneumonitis			RT pneumonitis \geq Grade 2		
		HR	95 % CI	p value	HR	95 % CI	<i>p</i> value	
MLD	≥20	2.33	0.21 - 26.04	0.49	5.88	0.45-78.04	0.18	
Lung V20	≥35 %	1.49	0.17 - 13.46	0.72	2.05	0.17 - 26.27	0.58	
Consolidation	Durvalumab	6.13	1.68 - 22.46	0.006	3.58	0.94 - 13.68	0.06	

HR, Hazard ratio; CI, Confidence interval; RT, radiation; MLD, Mean lung dose; Lung V20, the volume of lung parenchyma that received 20 Gy or more.

Jung et al., Lung Cancer 2020

CAN WE DISTINGUISH RP FROM ICI-P?

PROBABLE RADIATION PNEUMONITIS

NOTE CHANGES LIMITED MOSTLY TO RT FIELD

PROBABLE RADIATION PNEUMONITIS

BILATERAL LUNG CHANGES OR MORE DIFFUSE PARENCHYMAL CHANGES

PROBABLE ICI PNEUMONITIS

BUT YOU CAN GET A COMBO OF BOTH!

CHANGES IN BOTH! NOT SURE IF RP OR ICI-P BUT PATIENT SYMPTOMATIC

